期刊文献+

一类拟线性奇异椭圆方程组的有界正整体解

Bounded Positive Entire Solutions of Singular Quasilinear Elliptic Equations
下载PDF
导出
摘要 研究形如Δu+f1(x,u,▽u)u-βP(v)=0,Δv+f2(x,v,▽v)v-βP(u)=0,x∈RN,N≥3,β≥0的N维拟线性奇异椭圆方程组,在满足一系列条件时存在一对有界正整体解。 It suppose that β≥0 is a constant. This paper investigates N-dimensional singular, quasilinear elliptic equations of the form:{△u+f1(x,u,△↓u)u-βP(v)=0 △u+f2(x,u,△↓u)u-βP(v)=0 x∈R^n,N≥3,gives some sufficient conditions for the equations to have a bounded positive entire solution.
作者 张蕤
出处 《金陵科技学院学报》 2008年第4期1-3,共3页 Journal of Jinling Institute of Technology
关键词 奇异方程 拟线性椭圆方程 正整体解 有界解 上上解 下下解 singular equation quasilinear elliptic equation positive entire solution bounded solu-tion super-supersolution sub-subsolution
  • 相关文献

参考文献10

  • 1[1]Yasuhiro F,Kusano T.Existence of positive entire solutions for higher order quasilinear elliptic equations[J].J.Math.Soc.Japan,1994,46 (3):449-465
  • 2[2]Noussair E S,Swanson C A.Positive solutions of quasilinear elliptic equations in exterior domain[J].J.Math.Anal.Appl,1980,75:121-133
  • 3[3]Kusano T,Naito M,Swanson C A.Radial entire solution of even order similinear elliptic equations[J].Canad.J.Math,1988,40:1281-1300
  • 4[4]Kusano T,Hiroyuki U.Positive solutions of a class of second order similinear elliptic equations in the plane[J].Math.Ann.,1984,268:255-268
  • 5[5]Laiir A V,Shaker A W.Entire solutions of a singular semilinear elliptic problem[J].J.Math.Soc.Japan,1996,200(3):498-505
  • 6[6]Wu J Q.On positive entire solutions to singular nonlinear poly-harmonic equations in R2[J].Acta.Math.Sci.Ser.A,2003,23(5):627-640
  • 7[7]Wu J Q.On the existence of radial positive solutions for polyharmonic systems[J].J.Math.Anal.Appl,2007,326(1):443-455
  • 8[8]Zhang Z J.A remark on the existence of entire solutions of a singular semilinear elliptic problem[J].J.Math.Anal.Appl.,1997,215:579-582
  • 9[9]Wu J Q.Bounded positive entire solutions of singular quasilinear elliptic equations[J].J.Diff.Equations,2007,235:510-526
  • 10[10]Qiu Lingyun and Yao Miaoxin.Entire positive solution to the system of nonlinear elliptic equations[J].Boundary Value Problems,2006,2006:1-11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部