摘要
研究形如Δu+f1(x,u,▽u)u-βP(v)=0,Δv+f2(x,v,▽v)v-βP(u)=0,x∈RN,N≥3,β≥0的N维拟线性奇异椭圆方程组,在满足一系列条件时存在一对有界正整体解。
It suppose that β≥0 is a constant. This paper investigates N-dimensional singular, quasilinear elliptic equations of the form:{△u+f1(x,u,△↓u)u-βP(v)=0 △u+f2(x,u,△↓u)u-βP(v)=0 x∈R^n,N≥3,gives some sufficient conditions for the equations to have a bounded positive entire solution.
出处
《金陵科技学院学报》
2008年第4期1-3,共3页
Journal of Jinling Institute of Technology
关键词
奇异方程
拟线性椭圆方程
正整体解
有界解
上上解
下下解
singular equation
quasilinear elliptic equation
positive entire solution
bounded solu-tion
super-supersolution
sub-subsolution