期刊文献+

模型误差对非圆信号测向MUSIC算法性能的影响 被引量:9

Performance Analysis of the MUSIC Algorithm for Noncircular Signals with Modeling Errors
下载PDF
导出
摘要 近年来,针对非圆信号的测向算法已陆续提出,对这些算法的渐近性能及Cramer-Rao界的分析也已见报道,但仍未涉及模型误差对此类算法影响的分析.本文概括介绍了用于非圆信号测向的MUSIC(Multiple Signal Classi-fication)算法,对其空间谱函数进行一阶泰勒展开,得到了测向误差的表达式,从而求得测向均方误差统计意义上的表达式.仿真实验验证了推导的正确性,并由理论结果分析了模型误差条件下测向误差与角度间隔和非圆相位差的关系. In recent years, a number of direction-finding algorithms for noncircular signals are proposed. The asymptotic per-formance and Cramer-Rao Bound (CRB) have been analyzed in the literatures. However, the robustness of these algorithms with modeling errors is out of range of the published papers. In this paper, the MUSIC algorithm for noncircular signals is introduced. The closed-form expression of mean square error is obtained from the first-order perturbation expansion of the spatial spectrum function. The simulation results validate our analysis. The robustness to the angular separation and the noncircularity phase with modeling errors is analyzed by virtue of the analytical results.
出处 《电子学报》 EI CAS CSCD 北大核心 2008年第12期2280-2284,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.60802053 No.60502040)
关键词 阵列信号处理 测向 模型误差 非圆信号 MUSIC array signal processing direction finding modeling errors noncircular signals MUSIC (Multiple Signal Classification)
  • 相关文献

参考文献11

  • 1Schmidt R O. Multiple emitter location and signal parameter estimation [ J]. IEEE Trans AP, 1986,34(3):276- 280.
  • 2Picinbono B. On circularity [J] .IEEE Trans SP, 1994,42(12) : 3473 - 3482.
  • 3Gounon P, Adnet C, Galy J, Localization angulaire de signaux non circulaires [ J ]. Tmitement du Signal, 1998, 15 ( 1 ) : 17 - 23.
  • 4Charge P, Wang Y, Saillard J. A non-circular sources direction finding method using polynomial rooting [ J ]. Signal Process, 2001,81(6) : 1765 - 1770.
  • 5Haardt M, Romer F. Enhancements of unitary ESPRIT for non- circular sources [ A ]. ICASSP2004-2 [ C ]. Canada: IEEE, 2004. 101 - 104.
  • 6Abeida H, Delmas J P. MUSIC-like estimation of direction of arrival for noncircular sources [ J ]. IEEE. Trans SP, 2006, 54 (7) :2678 - 2690.
  • 7Delmas J P, Abeida H. Stochastic Cramer-Rao bound for non- circular signals with applications to DOA estimation [ J ]. IEEE Trans SP,2004,52(11) :3192 - 3199.
  • 8Abeida H, Delmas J P. Gaussian Cramer-Rao bound for direction estimation of noncircular signals in unknown noise fields [J]. IEEE Trans SP,2005,53(12) :4610 - 4618.
  • 9Romer F, Haardt M. Deterministic Cramer-Rao Bounds for strict sense non-circular sources [ A]. Proc International ITG/ IEEE Workshop on Smart Antennas (WSA'07) [ C] .Austria: IEEE, 2007.1 - 5.
  • 10Swindlehurst A L, Kailath T. A performance analysis of subspace-based methods in the presence of model errors, Part I: The MUSIC algorithm [ J]. IEEE Trans SP, 1992,40(7) :1758 - 1774.

同被引文献96

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部