期刊文献+

Rejecting Outliers Based on Correspondence Manifold 被引量:2

Rejecting Outliers Based on Correspondence Manifold
下载PDF
导出
摘要 发现在二幅图象之间的可靠的相应的点是在计算机视觉的一个基本问题,特别与 L 视觉框架的发展。这篇论文介绍歧管的通讯并且建议一个新奇计划由听说向上的看法拒绝孤立点歧管。建议计划独立于在出版工作要估计并且克服可得到的方法的下列限制的参量的模型:效率严厉地因孤立点百分比的增加和估计的模型参数的数字倒下;孤立点拒绝被结合模型选择和模型评价。真实图象对的实验显示出我们的建议计划的优秀性能。 Finding reliable corresponding points between two images is a fundamental problem in computer vision, especially with the development of L∞ vision framework. This paper introduce the correspondence manifold and propose a novel scheme to reject outliers by learning upward views of the manifold. The proposed scheme is independent of the parametric model to be estimated and overcomes the following limitations of the available methods in the published works: efficiency sharply goes down with the increase of outlier percentage and the number of the estimated model parameters; outlier rejecting is coupled with model selection and model estimation. Experiments on real image pairs show the excellent performance of our proposed scheme.
出处 《自动化学报》 EI CSCD 北大核心 2009年第1期17-22,共6页 Acta Automatica Sinica
基金 Supported by National Natural Science Foundation of China (60675020, 60773132), Natural Science Foundation of Shandong Province (Q2007G02), and Opening Task-fund for National Laboratory of Pattern Recognition
关键词 计算机视觉 点对应 离群值 故障诊断 Computer vision, point correspondence, outlier rejection, diagnostic
  • 相关文献

参考文献22

  • 1Hartley R, Zisserman A. Multiple View Geometry in Computer Vision (Second Edition). Cambridge: Cambridge University Press, 2003
  • 2Brown M Z, Burschka D, Hager G D. Advances in computational stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(8): 993-1008
  • 3Tico M, Rusu C, Kuosmanen P. A geometric invariant representation for the identification of corresponding points. In: Proceedings of International Conference on Image Processing. Kobe, Japan: IEEE, 1999. 462-466
  • 4Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91--110
  • 5Hartley R, Schaffalitzky F. L∞ minimization in geometric reconstruction problems. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2004. 504-509
  • 6Kahl-F, Hartley R. Multiple view geometry under the L∞- norm. IEEE Transactions on Pattern Recognition and Machine Intelligence, 2008, 30(9): 1603-1617
  • 7Torr P H S, Murray D W. Outlier detection and motion segmentation. In: Proceedings of SPIE. Boston, USA: SPIE, 1993. 432-443
  • 8Sim K, Hartley R. Removing outliers using the L∞ norm. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2006. 485-494
  • 9Li H D. A practical algorithm for L∞ triangulation with outliers. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2007. 1-8
  • 10Rahmatullah I A. Identifying multiple influential observations in linear regression. Journal of Applied Statistics, 2005, 32(9): 929-946

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部