期刊文献+

发光细菌法中用发光二极管修正色度干扰的研究 被引量:1

Color Correction in Luminescent Bacteria Toxicity Test Utilizing Light Emitting Diode for Measuring Toxicity of Colored Water Samples
下载PDF
导出
摘要 在用发光细菌检测水样毒性时,水样的色度会干扰测量结果。该研究采用作者制作的发光二极管(LED)装置对水样色度引起的附加抑光读数进行修正。首先,利用食用色素溶液观察同种水样的色度对发光细菌和LED发光抑制的差异;其次,用坐标旋转变换的方法来矫正这一差异,并用食用色素和苯酚模拟有毒有色的水样,来验证方法的准确性。最后,用该修正方法检测染料活性黑KN-B溶液的毒性,并用双层管设置阴性对照来检验修正方法的可靠性。结果三组模拟水样得到的水样毒性与实际毒性之间的误差均<5%,表明该方法有效。测得活性黑KN-B的EC50为213.9mg/L,与先前用双层管色度修正法检测得到的结果相近。该研究为剔除由色度引起的附加抑光读数,准确反映水样本身毒性,提供了一种可行且较可靠的方法。 When colored water sample was measured with luminescent bacteria toxicity test, the color of sample will affect the detection for luminescence. A light emitting diode (LED) installation was used to correct the depression of luminescence which was Caused by sample color. There was difference between bacteria and LED luminescence by detecting edible colorant solution, then the coordinate rotation converting method was used to rectify the difference, which was authenticated using simulated water sample made by edible colorant and phenol. Finally, the toxicity of activity blank KN-B solution was detected by the method, and co-concentric double-deck test tubes were used to check the reliability of rectification. Results showed that the relative errors between sample toxicity and real toxicity were less than 5%, which indicated the method was effective. EC50 of KN-B was 213.9mg/L, which was similar to the result detected by double-deck test tubes. The method was found available to reject the luminescence depression caused by sample color.
出处 《环境科学与技术》 CAS CSCD 北大核心 2009年第2期102-105,共4页 Environmental Science & Technology
基金 国家高技术研究发展"863"计划专项基金(2003AA601020)
关键词 发光细菌 有色水样 发光二极管 坐标旋转变换 luminescent bacteria colored water sample light emitting diode (LED) coordinate rotation converting
  • 相关文献

参考文献12

二级参考文献54

共引文献412

同被引文献24

  • 1Dunlap PV, Tsukamoto KK. Luminous Bacteria. Prokaryotes, 2006(2): 863-892.
  • 2Hwang ET, Lee JH, Chae YJ, et al. Analysis of the toxic mode of action of silver nanopartieles using stress-specific bioluminescent bacteria. Small, 2008, 4(6): 746-750.
  • 3Ahn JM, Hwang ET, Youn CH. Prediction and classification of the modes of genotoxic actions using bacterial biosensors specific for DNA damages. Biosensors and Bioelectronics, 2009, 25(4): 767-772.
  • 4Golding GR, Kelly CA, Sparling R, et al. Evaluation of mercury toxicity as a predictor of mercury bioavailability. Environ Sci Technol, 2007, 41(16): 5685-5692.
  • 5Li YF, Li FY, Ho CL, et al. Construction and comparison of fluorescence and bioluminescence bacterial biosensors for the detection of bioavailable toluene and related compounds. Environmental Pollution, 2008, 52(1): 123-129.
  • 6Leedjarv A, Ivask A, Virta M, et al. Analysis of bioavailable phenols from natural samples by recombinant luminescent bacterial sensors. Chemosphere, 2006, 64(11): 1910-1919.
  • 7Lee JH, Mitchell RJ, Gu MB. Chemical-specific continuous biomonitoring using a recombinant bioluminescent bacterium DNT5 (nagR-nagAa::luxCDABE). Journal of Biotechnology, 2007, 131(3): 330-334.
  • 8Gueune H, Durand M J, Thouand G, et al. The ygaVP genes of Escherichia coli form a tributyltin-inducible operon. Appl Environ Microbiol, 2008, 74(6): 1954-1958.
  • 9Gueune H, Thouand G, Durand M J, et al. A new bioassay for the inspection and identification of TBT-containing antifouling paint. Marine Pollution Bulletin, 2009, 58(11):1734-1738.
  • 10Girotti S, Ferri EN, Fumo MG, et al. Monitoring of environmental pollutants by bioluminescent bacteria. Analytica Chimica Acta, 2008, 608(1): 2-29.

引证文献1

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部