摘要
Let x : Mn^n→ R^n+1 be an n(≥2)-dimensional hypersurface immersed in Euclidean space Rn+1. Let σi(0≤ i≤ n) be the ith mean curvature and Qn = ∑i=0^n(-1)^i+1 (n^i)σ1^n-iσi. Recently, the author showed that Wn(x) = ∫M QndM is a conformal invariant under conformal group of R^n+1 and called it the nth Willmore functional of x. An extremal hypersurface of conformal invariant functional Wn is called an nth order Willmore hypersurface. The purpose of this paper is to construct concrete examples of the 3rd order Willmore hypersurfaces in Ra which have good geometric behaviors. The ordinary differential equation characterizing the revolutionary 3rd Willmore hypersurfaces is established and some interesting explicit examples are found in this paper.
Let x : Mn^n→ R^n+1 be an n(≥2)-dimensional hypersurface immersed in Euclidean space Rn+1. Let σi(0≤ i≤ n) be the ith mean curvature and Qn = ∑i=0^n(-1)^i+1 (n^i)σ1^n-iσi. Recently, the author showed that Wn(x) = ∫M QndM is a conformal invariant under conformal group of R^n+1 and called it the nth Willmore functional of x. An extremal hypersurface of conformal invariant functional Wn is called an nth order Willmore hypersurface. The purpose of this paper is to construct concrete examples of the 3rd order Willmore hypersurfaces in Ra which have good geometric behaviors. The ordinary differential equation characterizing the revolutionary 3rd Willmore hypersurfaces is established and some interesting explicit examples are found in this paper.
基金
supported by Project No. 10561010 of NSFC