期刊文献+

相关扩散方程在图像修补中的应用 被引量:5

Application of Coherence-enhancing Diffusion in the Image Inpainting
下载PDF
导出
摘要 图像修复是图像复原研究中的一个重要内容,可以用于旧照片中丢失信息的恢复、视频文字去除以及视频错误隐藏等。目前有很多图像修补算法对于灰度图像的修补已经取得了很好的修补效果,但存在着时间消耗大和应用到彩色图像修补中时修补效果不理想的缺点。将相关扩散方程引入到图像修补中,并进行改进,使得图像的修补效率和修补效果都得到了有效提高,而且可以很自然地应用到彩色图像修补中。大量的实验证明了该方法的有效性。 Image inpainting is an important research field in the area of image restoration, which can be used to restore damaged images and videos, remove text and conceal errors in videos. Now many inpainting algorithms perform well in the gray image inpainting, but they are time consuming and not quite applicable to color images. This paper introduces coherence- enhancing diffusion into image inpainting, and adapts it to improve the efficiency and performance of inpainting. Moreover our method can extend for color image inpainting naturally. Many experimental results prove our method is effective.
出处 《中国图象图形学报》 CSCD 北大核心 2009年第1期71-76,共6页 Journal of Image and Graphics
基金 香港特区政府研究资助局研究项目(CUHK/4185/00E)
关键词 相关扩散方程 图像修补 结构张量 各向同性扩散 各向异性扩散 coherence-enhancing diffusion, image inpainting, structure tensor, isotropic diffusion, anisotropic diffusion
  • 相关文献

参考文献9

  • 1Bertalmio M, Sapiro G, Caselles V, et al. Image inpainting[ A]. In: Proceedings of International Conference on Computer Graphics and Interactive Techniques [ C] , New Orleans, Louisiana, USA, 2000: 417-424.
  • 2Bertalmio M. Strong-continuation, contrast-invariant inpainting with a third-order optimal PDE [ J ] . IEEE Transactions on Image Processing, 2006, 15 ( 7 ) : 1934-1938.
  • 3Chan T F, Shen J H. Mathematical models for local non-texture inpainting[ J ]. SIAM Journal of App lied Mathematics, 2001, 62(3) : 1019-1043.
  • 4许威威,潘志庚,张明敏.一种基于整体变分的图象修补算法[J].中国图象图形学报(A辑),2002,7(4):351-355. 被引量:30
  • 5邵肖伟,刘政凯,宋璧.一种基于TV模型的自适应图像修复方法[J].电路与系统学报,2004,9(2):113-117. 被引量:52
  • 6郑精灵,王树根.整体变分算法在图像修补中的应用研究[J].计算机辅助设计与图形学学报,2003,15(10):1218-1223. 被引量:23
  • 7Chan T F, Shen J. Non-texture inpainting by curvature driven diffusion (CDD) [ J]. Journal of Visual Communication and Image Representation, 2001, 12(4): 436-449.
  • 8Weickert J. Coherence-enhancing diffusion of color images[ J]. Image and Vision Computing, 1999, 17(3) : 201-212.
  • 9Di Zenzo S. A note on the gradient of a multi-image [ J ]. Computer Vision Graphics Image Processing, 1986, 33( 1 ) :116-125.

二级参考文献18

  • 1[1]Chan T, Shen F. Mathematical Models for Local Non-texture Inpaintings [J]. SIAM Journal on Applied Mathematics, 2002, 62: 1019-1043.
  • 2[2]Bertalmio M, et al. Image Inpainting [A]. SIGGRAPH [C]. 2000, 1: 417-424.
  • 3[3]Criminisi A, Perez P, Toyama K. Object Removal by Exemplar-Based Inpainting [J]. IEEE Proc. CVPR, 2003, 2: 721-728.
  • 4[4]Masnou S. Disocclusion: A Variational Approach Using Level Lines [J]. IEEE Trans. Image Processing, 2002, 11: 68-76.
  • 5[5]Masnou S, Morel J. Level Lines Based Disocclusion [A]. IEEE Proc. ICIP [C]. 1998, 3: 259-263.
  • 6[6]Levin A, Zomet A, Weiss Y. Learning How to Inpaint from Global Image Statistics [A]. International Conference on Computer Vision [C]. 2003, 1: 305-312.
  • 7Nitzberg M, Mumford D, Shiota T. Filtering, segmentation, and depth [A]. In: Lecture Notes in Computer Science [C].Berlin: Springer-Verlag, 1993. 662-804.
  • 8Masnou S, Morel J M. Level lines based disocclusion [A]. In:Proceedings of the 5th IEEE International Conference on Image Processing, Chicago, 1998. 259-263.
  • 9Bertalmio M, Sapiro G, Caselles V, et al . Image inpainting[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, New Orleans, 2000. 417-424.
  • 10Chan T, Shen J. Mathematical models for local deterministiccinpaintings [OL]. http://www. math. uela. edu,2000.

共引文献86

同被引文献53

  • 1李兰兰,吴乐南.基于各向异性扩散的图像去噪并放大[J].信号处理,2005,21(1):106-107. 被引量:6
  • 2陆剑锋,林海,潘志庚.自适应区域生长算法在医学图像分割中的应用[J].计算机辅助设计与图形学学报,2005,17(10):2168-2173. 被引量:69
  • 3王毅,张良培,李平湘.各向异性扩散平滑滤波的改进算法[J].中国图象图形学报,2006,11(2):210-216. 被引量:28
  • 4谢美华,王正明.基于边缘定向增强的各向异性扩散抑噪方法[J].电子学报,2006,34(1):59-64. 被引量:27
  • 5BERTALMIO M, SAPIRO G, CASELLES V, et al. Image inpainting [ C] // Proceedings of the 27th Annual Conference on Computer Graphics. New York: ACM, 2000:417 -422.
  • 6RUDIN L, OSHER S, FATERNI E. Nonlinear total variation based noise removal algorithms [ J]. Physica D: Nonlinear Phenomena, 1992, 60( 1/2/3/4) : 259 -268.
  • 7KANG S, SHEN J H. Euler's elastica and curvature-based inpaint- ing[ J]. SIAM Journal of Applied Mathematics, 2002, 63 (2) : 564 - 592.
  • 8CHAN T F, SHEN J H. Nontexture inpainting by curvature-driven diffusions[ J]. Journal of Visual Communication and Image Repre- sentation,2001, 12(4) : 436 -449.
  • 9AUJOI J F, AUBERT G, LAURE B F, et al. Image decomposition into a bounded variation component and an oscillating component [J]. Journal of Mathematical Imaging and Vision, 2005, 22(1) : 71 -88.
  • 10WU J Y, RUAN Q Q. A novel exemplar-based image completion model [ J]. Journal of Information Science and Engineering, 2009, 25(2) : 481 -497.

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部