期刊文献+

基于核函数的混合C均值聚类算法 被引量:6

Hybrid C-means Clustering Algorithm Based on the Kernel Function
下载PDF
导出
摘要 提出了一种基于核函数的混合C均值聚类算法。首先利用模糊C均值聚类算法和另一种类型的可能性C均值聚类算法的优点,设计出一种混合C均值聚类算法。然而鉴于该算法存在的不足,本文将Mercer核函数引入到该算法中,仿真实验结果证实了该方法的可行性和有效性。 A hybrid C-means clustering algorithm based on the kernel function was presented in this paper. Firstly, the advantages of fuzzy C-means clustering algorithm and another possibilistic C-means clustering algorithm were utilized to design a new hybrid C-means clustering algorithm accordingly in this paper. And then on account of the lack of the algorithm, this paper would introduce Mercer kernel function into the algorithm, so the clustering was better performed. The results of simulation experiments show the feasibility and effectiveness of the hybrid C-means clustering based on the kernel function.
出处 《模糊系统与数学》 CSCD 北大核心 2008年第6期148-151,共4页 Fuzzy Systems and Mathematics
基金 山西省自然科学基金资助项目(20051042) 山西省研究生创新项目(20061024)
关键词 核函数 混合C均值聚类 可能性C均值聚类 Kernel Function Hybrid C-means Clustering Possibilistie C-means Clustering
  • 相关文献

参考文献7

  • 1Bezdek J C. Pattern recognition with fuzzy objective function algorithm[M]. New York:Plenum Press,1981.
  • 2Krishnapuram R, Keller J M. A possibilistic approach to elustering[J]. IEEE Trans on Fuzzy Systems, 1993,1 (1): 98-110.
  • 3Krishnapuram R, Keller J M. The possibilistie c-means algorithm: insights and recommendations[J]. IEEE Trans on Fuzzy Systems, 1996 , 4(3) :385-393.
  • 4Girolami M. Mercer Kernel Based Clustering in Feature Space[J]. IEEE Trans on Neural Networks,2002,13 (3): 780-784.
  • 5张莉,周伟达,焦李成.核聚类算法[J].计算机学报,2002,25(6):587-590. 被引量:195
  • 6Bezdek J C, et al. Will the real IRIS data please stand up? [J]. IEEE Trans on Fuzzy System, 1999,7 (3): 368-369.
  • 7Chernoff D F. The use of faces to represent points in k-dimensional space graphically[J]. Journal of American Statistic Association, 1999,58 (342) : 361- 368.

共引文献194

同被引文献61

  • 1吴景岚,朱文兴.基于K均值的迭代局部搜索聚类算法[J].计算机工程与应用,2004,40(22):37-41. 被引量:8
  • 2李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:897
  • 3刘开第,曹庆奎,庞彦军.基于未确知集合的故障诊断方法[J].自动化学报,2004,30(5):747-756. 被引量:59
  • 4潘庆丰,陈水利,陈国龙.基于核函数的模糊C均值聚类算法[J].集美大学学报(自然科学版),2006,11(4):369-374. 被引量:5
  • 5MarquesdesaJP 吴逸飞 译.模式识别-原理、方法及应用[M].北京:清华大学出版社,2002.28-41.
  • 6袁玉波,杨传胜,黄延祝,等.数据挖掘与最优化技术及应用[M].北京:科学出版社,2007:112-115.
  • 7KRISHNAPURAM R, KELLER J M. The possibilistie C-means algo- rithm:insight and recommendations[ J]. IEEE Trans on Fuzzy Sys- tems,1996,4(3) :385-393.
  • 8GIROLAMI M. Mercer kernel based clustering in feature space [ J]. I EEE Zrans on Neural Networks,2002,13 (3) :780- 784.
  • 9ZHANG Jiang-she, LEUNG Y W. Improved possibilistic C-means clus- tering algorithms [ J ]. IEEE Trans on Fuzzy Systems, 2004, 12 (2) :209-217.
  • 10FRANK C H R, KIL-SO0 C, BYUNG-IN C. Kernel approach to possi- bilistic C-means clustering[ J]. International Journal of Intelligent Systems, 2009,24 ( 3 ) : 272- 293.

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部