期刊文献+

基于遗传算法的多式联运应急管理研究 被引量:3

The Emergency Decision System Research in Multimode Transportation and based on Genetic Algorithm
下载PDF
导出
摘要 实现在多式联运中实现运输时间和运输费用的最小化,多式联运运输方式选择问题直接关系到货物运输的费用和时间。首先分析了多式联运运输方式选择多目标优化问题的数学模型及虚拟运输网络图;其次,用遗传算法来解决多目标化问题,给出了染色体编码,遗传算子的设计,适应度函数定义;最后通过示例来演示,通过遗传算法来解决多式联运多目标优化的问题。实验表明,将此算法用于多式联运应急管理与传统算法相比,能加速进化速度和多角度寻优能力,提高应急决策。 To achieve the realization of inter-modal transport in time and transport costs of the minimum, Firstly, the mathematics model and virtual transportation network for multi-object optimization of transportation modes selection in multimode transportation is analyzed. Secondly, Genetic algorithm is used solve the problem of Multi-Objective Optimization, The design of chromosome coding , genetic operators and Fitness Function is also proposed. Finally, an example to demonstrate through genetic algorithms to solve the multi-objective optimization of the multimodal transport problems. Experiments show that, This algorithm for multimodal transport emergency management compared with the traditional method, can accelerate the evolution of speed and multi-angle optimization capabilities, improve emergency response decision-making.
作者 丁建伟
出处 《电脑开发与应用》 2009年第1期49-50,60,共3页 Computer Development & Applications
关键词 多式联运 应急管理 遗传算法 multi mode transportation, emergency decision, genetic algorithm
  • 相关文献

参考文献6

二级参考文献37

  • 1李引珍,郭耀煌.交通运输网络最短路径关键边问题研究[J].中国管理科学,2004,12(4):69-73. 被引量:28
  • 2张连文,夏人伟.Pareto最优解及其优化算法[J].北京航空航天大学学报,1997,23(2):206-211. 被引量:13
  • 3MU Shengjing, SU Hongye, WANG Yuexuan, et al. An efficient evolutionary multi-objective optimization algorithm [A]. Proceedings of the IEEE Congress on Evolutionary Computation (CEC2003) [C]. Canberra: IEEE Press, 2003,914 - 920.
  • 4Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms [A]. Proceedings of the First International Conference on Genetic Algorithms [C].Lawrence Erlbaum: IEEE Press, 1985, 93 - 100.
  • 5Fonseca C M, Fleming P J. An Overview of Evolutionary Algorithms in Multiohjective Optimization [R]. Sheffield:Department of Automatic Control and Systems Engineering,University of Sheffield, 1994.
  • 6Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms [J].Evolutionary Computation, 1994, 2(3): 221-248.
  • 7Veldhuizen D A V. Multiobjective evolutionary Algorithms:Classification, Analyses, and New Innovations [D].Dayton: Air Force Institute of Technology Air University,1999.
  • 8Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: Empirical results [J]. Evolutionary Computation, 2000, 8(2): 173-195.
  • 9Deb K, Pratap A, Meyarivan T. Constrained Test Problems for Multi-objective Evolutionary Optimization [R]. KanGAL report, 200002, Kanpur : Indian Institute Technology, 2002.
  • 10Michalewicz Z, Dasgupta D, Le R, et al. Evolutionary algorithm for constrained engineering problems [J].Computers & Industrial Engineering, 1996, 30(4) :861 - 87O.

共引文献84

同被引文献54

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部