期刊文献+

基于组合卫星导航系统的编队卫星分析 被引量:3

Dilution of Precision of Relative Positioning for Formation Flying Satellites Using GNSS
原文传递
导出
摘要 针对编队飞行中星间相对定位的任务需求,分析了卫星导航系统对编队卫星的动态观测几何问题,引入了相对定位精度衰减因子(RDOP)描述,并讨论了其性质。在对编队中单颗低轨卫星进行导航卫星GDOP分析的基础上,研究了不同编队宽度下编队集合的共视卫星和共视时段,仿真了一定场景下的编队卫星RDOP,并比较了与PDOP的大小关系。接收机的截止高度角对于导航卫星GDOP影响较大;编队宽度会影响到共视卫星的选择;而与采用单个GPS系统相比,采用GPS-Galileo组合卫星导航系统对编队卫星进行相对定位,RDOP数值明显减小,从而有利于高精度的星间位置确定。 Based on the demand of relative positioning in formation flying missions, the dynamic observation geometry between the global navigation satellite systems and the formation flying satellites is analyzed. The description of relative dilution of precision (RDOP) and its properties are illustrated. The geometric dilution of precision (GDOP) analysis is carried out firstly for a single satellite in the formation. The common visible satellites and the corresponding visible time intervals were then discussed with different formation relative distances. The RDOP for formation flying satellites in certain scenarios is calculated and compared with the values of PDOP. Simulations show that the masking elevation angle of the receivers is a vital factor for GDOP. The formation relative distance has an impact on the selection of common visible satellites. The integrated GPS-Galileo system has advantages over the single GPS navigation system for the relative positioning of formation flying satellites. The former possesses a smaller GDOP value and thus can benefit the high precision inter-satellite position determination.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2009年第1期92-96,共5页 Geomatics and Information Science of Wuhan University
基金 国家重点基础研究发展规划资助项目(5131701) 国家自然科学基金资助项目(60402033)
关键词 编队卫星 共视卫星 相对定位精度衰减因子 组合卫星导航系统 formation flying satellites common visible satellite relative dilution of precision (RDOP) integrated GNSS
  • 相关文献

参考文献8

二级参考文献19

  • 1[2]Burns R, McLaughlin C A, Leitner J, et al. TechSat 21: Formation design, control, and simulation. IEEE Proceedings of Aerospace Conference, 2000, 7:19~25
  • 2[3]Sedwick R J, Kong E M C, Miller D W. Exploiting orbital dynamics and micropropulsion for aperture synthesis using distributed satellite systems: Applications to TechSat 21. AIAA-98-5298, 1998
  • 3[4]Massonnet D. Capabilities and limitations of the interferometric cartwheel. IEEE Trans on Geoscience and Remote Sensing, 2001, 39(3): 506~520
  • 4[5]Massonnet D, Thouvenot E, Ramongassie S, et al. A wheel of passive radar microsats for upgrading existing SAR projects. Proceedings of International Geoscience and Remote Sensing Symposiun 2000,IGARSS'2000, 3:1000~1003
  • 5[6]Ramongassie S, Phalippou L, Thouvenot E, et al. Preliminary design of the payload for the interferometric cartwheel. Proceedings of International Geoscience and Remote Sensing Symposiun 2000, IGARSS'2000,3:1004~1006
  • 6[7]Krieger G, Fiedler H, Mittermayer J, et al. Analysis of multistatic configurations for spaceborne SAR interferometry. IEE Proceedings Radar Sonar Navigation, 2003, 150(3): 87~96
  • 7[8]Fiedler H, Krieger G, Jochim F, et al. Analysis of satellite configurations for spaceborne SAR interferometry. International Symposium Formation Flying Mission & Technologies, 2002, Toulouse,France
  • 8[9]Sabol C, Burns R, McLaughlin C A. Formation Flying Design and Evolution. AAS 99-121, Space Flight Mechanics 99, Vol. 102 of Advances in the Astronautical Sciences, 1999, 265~284
  • 9周忠谟 易杰军 周琪.GPS卫星测量原理与应用[M].北京:测绘出版社,1995..
  • 10邱致和 王万义.GPS原理与应用[M].北京:电子工业出版社,2002..

共引文献139

同被引文献37

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部