期刊文献+

基于UKF的室内移动机器人定位问题 被引量:3

SLAM of indoor mobile robots based on the Unscented Kalman Filter
下载PDF
导出
摘要 定位是移动机器人必须具备的基本要求,在室内环境中,物体大多是多边形,因此可由线段进行描述,由激光传感器获取环境信息,采用哈夫变换对激光数据进行分簇,最小二乘法拟合线段特征,并建立里程计模型和观测模型;在传统的EKF定位算法中,线性化处理会导致计算精度下降,甚至造成滤波器的不稳定,且推导Jacobian矩阵比较困难;为了克服EKF的缺点,文章采用UKF算法将里程计数据和激光传感器数据进行融合,无需进行线性化处理,可获得高精度的移动机器人的位姿;通过实验,验证了基于UKF的定位算法在定位的精确性上优于传统的EKF定位算法。 Localization is a fundamental requirement for a mobile robot. In indoor environments, the objects are polygonal usually. These objects can be described as line segments. The laser sensor can obtain the information of the environment automatically. By making use of the Hough transform technology, laser sensor data can be divided into different clusters. Then the least square method is used to extract features of line segments. The odometry model and the observation model are established. In the Extended Kalman Filter (EKF) algorithm, a nonlinear system is linearized to a linear system, which may lead to the decline of accuracy and even instability of the filter, and it is hard to calculate Jacobian matrices. In order to overcome the disvantages of the EKF, the Unscented Kalman Filer (UKF) is used to integrate the data from odometry and the laser sensor. By using this method, the accurate pose of the mobile robot can be obtained without linearizing the system model. It is proved by experiments that the algorithm based on the UKF is obviously more accurate than the algorithm based on the EKF.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第1期9-13,共5页 Journal of Hefei University of Technology:Natural Science
基金 先进数控技术江苏省高校重点建设实验室基金资助项目(KXJ07127)
关键词 移动机器人 UNSCENTED卡尔曼滤波 数据融合 定位 mobile robot Unscented Kalman Filter data integration localization
  • 相关文献

参考文献7

  • 1Ma Xudong, Dai Xianchong, Shang Wen. Vision based extended Monte Carlo localization for mobile robot[C]//Proceedings of the IEEE International Conference on Mechatronics and Automation, Vol 4. Niagara Falls, Canada, 2005:1831-1836.
  • 2Xu Zezhong, Liu Jilin, Xiang Zhiyu. Map building and localization using 2D range scanner[C]//Proceedings of the 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation, Vol 2. Kobe, Japan, 2003:848-853.
  • 3Burgard W, Derr A, Fox D, et al. Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach[C]//Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol 2. Victoria B C, Canada, 1998:730-735.
  • 4Porta J M, Krose B J A. Appearance-based concurrent map building and localization using a multi-hypotheses tracker[C]//Proceedings of 2004 IEEE/RSJ International Confer ence on Intelligent Robots and Systems, Vol 4. Sendai, Japan, 2004:3424- 3429.
  • 5Julier S J, Uhlmann J K, Durrant Whyte H F. A new ap proach for filtering nonlinear systems [C]//Proceedings of American Control Conference, Vol 3, 1995 : 1628-1632.
  • 6Julier S J, Uhlmann J K, Durrant-Whyte H F. A new ap proach for the nonlinear transformation of mean and covari ances in filters and estimators[J].IEEE Transactions on Automatic Control, 2000,45(3) :477-482.
  • 7Deriche R, Vaillant R. From nosiy edges points to 3D reconstruction of a scene: a robust approach and its uncer tainty analysis[C]//Proe Scandinavian Conf Image Analy sis. Denmark, 1991:71-79.

同被引文献34

  • 1姜雪原,马广富,胡庆雷.改进型UKF滤波算法的卫星姿态估计[J].哈尔滨工程大学学报,2005,26(4):544-549. 被引量:3
  • 2Arulampalam M S, Maskell S, Gordon N. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian traeking[J ]. IEEE Transactions on Signal Processing, 2003,50 (2) : 174- 188.
  • 3Limketkai B, Fox D, Lin L. CRF-filters; discriminative particle filters for sequential state estimation[C]//Proceedings of IEEE International Conference on Robotics and Automation,Roma, Italy, 2007 : 3142-3147.
  • 4Durrant-Whyte H F. Where am I? A tutorial on mobile vehicle localization [J]. Industrial Robot, 1994, 21 (2) : 11-16.
  • 5Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography [ J]. Communications of the ACM 1981,24(6) :381-395.
  • 6Julier S J, Uhlman J K, Durrant-Whyte H F. A new approach for filtering nonlinear systems[C]//Proceeding of the American Control Conference, 1995 : 1628- 1632.
  • 7秦永元,张洪钺,汪淑华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,2010:33-48.
  • 8MA Xudong, DAI Xianzhong, SHANG Wen. Vision-based extended Monte Carlo localization for mobile robot [ C ]// Proceedings of the IEEE International Conference on Mecha- tronics and Automation. [ s. 1 ], 2005.
  • 9XU Zezhong, LIU Jilin, XIANG Zhiyu. Map building and localization using 2D range scanner [ C ] //Proceedings of the 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Kobe, Japan, 2003.
  • 10BUGARD W, DERR A, FOX D, et al. Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach [ C ] //Proceed- ings of the 1998 IEEE/RSJ International Conference on In- telligent Robots and Systems. Victoria B C, Canada, 1998.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部