期刊文献+

一种新信息熵定义及其在图像分割中的应用 被引量:12

A new information entropy definition and its application in image segmentation
下载PDF
导出
摘要 熵阈值法是图像分割中的重要方法,并在图像处理中得到了广泛的应用。针对香农熵阈值法因存在对数计算而导致计算量过大的问题,本文首先提出了一种新的信息熵;其次对其一些性质进行了探讨;最后用于图像分割的阈值选取。实验结果表明,本文的新熵阈值法是可行的,且其计算所需时间量远小于比香农熵阈值法。 Entropy based thresholding is an important method of image segmentation and is extensively used in the image processing for many applications. This paper considers that thresholding based on Shannon entropy has some shortage of more computation time due to logarithm operation. The new information entropy is firstly proposed in the paper, then some of its properties are discussed. Finally it is used to choose optimal threshold in image segmentation. The experimental results show that new entropy based thresholding method is feasibile, and its cost time is far less than that of thresholding method based on Shannon entropy.
作者 吴成茂
出处 《西安邮电学院学报》 2009年第1期72-79,共8页 Journal of Xi'an Institute of Posts and Telecommunications
基金 国家自然科学基金项目(编号:60572133) 陕西省教育厅项目(编号:06JK194)
关键词 图像分割 阈值法 香农熵 乘积型熵 图像处理 计算机 image segmentation thresholding Shannon entropy product entropy
  • 相关文献

参考文献9

  • 1M. Sezgin and B. Sankur, Survey over image thresholding techniques and quantitative performance evaluation [ J ]. Journal of Electronic Image, 2004, 13(1):145-165.
  • 2J. N. Kapur, P. K. Sahoo, A. K. C. Wong, A new method for gray level picture thresholding using the entropy of histogram[J ]. CVGIP, 1985,29,1985,273 - 285.
  • 3A. S. Abutaleb, Automatic thresholding of gray - level pictures using two - dimensional entropies [ J ]. Pattern Recognition, 1989, 47, 22-32.
  • 4J. C. Yen, F.J. Chang, and S. Chang, A new Criterion for automatic multilevel thresholding [J]. IEEE Trans. On Image Process, 1995, IP-4, 370-378.
  • 5X.J.Wu, Y.L.Zhang, L.Z. Xia, A fast recurring two- dimensional entropic thresholding algorithm[J ]. Pattern Recognition, 1999, 32, 2055 - 2061.
  • 6C. Tsallis , Nonextensive Statistics. Theoretical, experimental and Computational evidences and eonnections[J ]. Brazilian Journal of Physics, 1999, 29(1), 1 : 35.
  • 7J. N. Kapur, Some new nonadditive measures of entropy [ J ]. Boll. U. M. I., 1988, 7,2 - b,253 - 266.
  • 8A.P. Sant'anna, I.J. Tanejia, Trigonometric entropies, Jensen Difference divergence measures and error bounds [J]. Information sciences, 1985, 35,145-155.
  • 9J.Gong, L.Y. Li, W.N. Chen, Fast recursire algorithm for two- dimensional thresholding[J ]. Pattern Recognition, 1998, 31(3), 295-300.

同被引文献107

引证文献12

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部