期刊文献+

基于改进KNN算法实现网络媒体信息智能分类 被引量:7

Implementation of Information Intelligence Classification on Internet Media Based on Improved KNN Algorithm
下载PDF
导出
摘要 在互联网资源迅速膨胀的今天,面向重要网络媒体海量发布信息实现智能分类,能在很大程度上解决目前网上信息杂乱的现象,对于网络信息监管、舆论引导工作有着深远的意义。鉴于此,基于改进KNN算法实现网络媒体信息智能分类,并进一步验证改进算法的有效性。实验结果表明改进KNN算法能对网络媒体信息进行有效分类,算法性能指标达到网络监管工作关于信息分类的业务需求。将改进KNN算法实现网络媒体信息智能分类是可行、有效的。 Today, the resources of network inflate quickly, it has momentous significance for the task of the surveillance and management of network and leading the public to carry out the intelligence classification of the massive amount of information that released by the important network medium. To a large extent, it can solve currently the information of disorderly phenomenon. Owing to this, mainly implements the information intelligence classification on network media, based on the improved KNN algorithm, and then validates the validity of this improved algorithm. The result of the experiment indicates that the improved KNN algorithm can realize an effective intelligence classification to information that network medium released, the index of algorithm's performance can achieve the business demands which the work of surveillance and management of network requires the information intelligence classification. So it's feasible and effective to apply the KNN algorithm to the intelligence classification of the massive amount of information that the network medium released.
出处 《计算机技术与发展》 2009年第1期1-4,共4页 Computer Technology and Development
基金 国家自然科学基金项目(60502032) 上海市科技计划项目(065115020)
关键词 智能分类 KNN算法 查全率 查准率 intelligence classification KNN algorithm recall precision
  • 相关文献

参考文献5

  • 1中国互联网络信息中心.第21次中国互联网络发展状况统计报告[DB/OL].北京:[出版者不详],2008-10-17.
  • 2Lewis D D. Ewduating and optimizing autonomous text classi- fication systems[ C]/7 In Proceedings of S1GIR - 95, 18th ACM International Conference on Research and Development in Infommtion Retrieval. Seattle, US: [s. n. ], 1995.
  • 3徐威,董渊,白若鹞,张素琴.针对中文文本自动分类算法的评估体系[J].计算机科学,2007,34(8):177-179. 被引量:7
  • 4张宁,贾自艳,史忠植.使用KNN算法的文本分类[J].计算机工程,2005,31(8):171-172. 被引量:98
  • 5Sebasliani F. Machine Leanfing in Automated Text Categorization[J ]. ACM Computing Surveys, 2(102,34 ( 1 ) : 1 - 47.

二级参考文献15

  • 1孙茂松,邹嘉彦.汉语自动分词研究评述[J].当代语言学,2001,3(1):22-32. 被引量:101
  • 2张春霞,郝天永.汉语自动分词的研究现状与困难[J].系统仿真学报,2005,17(1):138-143. 被引量:60
  • 3Salton G,Lesk M E.Computer Evaluation of Index and Text Processing. Association for Computing Machinery,1968,15(1).
  • 4Maron M E. On Relevance,Probabilistic Indexing and Information Retrieval. Journal of the ACM,1960,7(3).
  • 5Lewis D D. Feature Selection and Feature Extraction for Text Categorization. In Proceedings of Speech and Natural Language Workshop. Defense Advanced Research Projects Agency,Morgan Kaufmann,1992-02:212-217.
  • 6Yang Yiming,Liu Xin. A Re-examination of Text Categorization Methods. Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR),1999:42-49.
  • 7Jain G,Ginwala A,Aslandogan Y A.An approach to text classification using dimensionality reduction and combination of classifiers,Information Reuse and Integration,2004.IRI 2004.In:Proceedings of the 2004 IEEE International Conference on,Nov.2004.564-569
  • 8Wang Baoyi,Zhang Shaomin.A Novel Text Classification Algorithm Based on Nave Bayes and KL-Divergence,Parallel and Distributed Computing,Applications and Technologies,2005.PDCAT 2005.In:Sixth International Conference on,Dec.2005.913-915
  • 9Yang Yiming,Liu Xin.A Re-Examination of Text Categorization Methods.In:22nd Annual International SIGIR.1999.42-49
  • 10Wang Yi,Wang Xiao-Jing.A new approach to feature selection in text classification,Machine Learning and Cybernetics,2005.In:Proceedings of 2005 International Conference on,Aug.2005,6:3814-3819

共引文献103

同被引文献56

引证文献7

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部