期刊文献+

非线性系统的多模型预测控制方法 被引量:6

Multi-model Predictive Control of Nonlinear Systems
下载PDF
导出
摘要 提出了一种基于多模型的预测控制方法,用于解决典型非线性对象——污水生化处理过程中的控制问题.首先给出了基于局部模型的多模型建模方法,该方法从积累的大量系统输入输出数据中找出与系统当前模态相匹配的数据集合,利用局部多项式拟合方法建立系统的局部模型,再根据系统模态的变化建立系统的多个模型;将所得多模型与预测控制相结合,提出一种多模型预测控制方法,从而解决了一类结构未知、仅使用大批历史数据工业过程的控制问题.仿真试验说明了该方法的有效性. The multi-model predictive control strategy is presented to solve the control problem of typical nonlinear systems, i.e., the wastewater treatment process. The way to develop the multimodel is based on the local models which were systematically developed via finding out the data set from numerous accumulated system input/output database to match the current modality and taking advantage of the fitting of polynominal. Then, the multiple model were developed according to the variation in system modality. Combining the multiple models thus developed with predictive control, the multi-model predictive control strategy is proposed, thus solving the control problem of a class of unknown-structure nonlinear systems just on the basis of numerous historical database. The simulation test illustrates the validity of this approach.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第1期26-29,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60874057) 辽宁省教育厅科技研究项目(2008563)
关键词 非线性系统 多模型 邻域 预测控制 污水处理过程 nonlinear system multiple model neighborhood predictive control wastewater treatment process
  • 相关文献

参考文献10

  • 1Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control[J]. Automatica, 1987,23(2) : 137 - 160.
  • 2Qin S J, Badgwell T A. A survey of industrial model predictive control technology [ J ]. Control Engineering Practice, 2003,11 (7) : 733 - 764.
  • 3Bontempi G, Birattari M. From linearization to lazy learning: a survey of divide-and-conquer techniques for nonlinear control [J]. International Journal of Computational Cognition, 2005,3( 1 ) : 56 - 73.
  • 4Danielle D, Doug C. A practical multiple model adaptive strategy for single-loop MPC [ J ]. Control Engineering Practice, 2003,11 (2) : 141 - 159.
  • 5Nakanish J, Farrell J A, Schaal S. Composite adaptive control with locally weighted statistical learning[J ]. Neural Network, 2005,18( 1 ) : 71 - 90.
  • 6刘红波,李少远,柴天佑.一种基于工况分解的热工过程非线性控制模型建立方法及应用[J].控制理论与应用,2004,21(5):785-790. 被引量:7
  • 7Alex J, Beteau J F, Copp J, et al. Benchmark for evaluating control strategies in wastewater treatment plants [ C ] // Conference of European Union Control Association. Karlsruhe: Karl-Sruhe University, 1999:2237 -2242.
  • 8Rivera D, Steranan A. A "Model-on-Demand" identification methodology for nonlinear process systems[J]. International Journal of Control, 2001,74(18) : 1708- 1717.
  • 9Magni L, Scattolini R. Stabilizing decentralized model predictive control of nonlinear systems [ J ]. Automatica, 2006,42(7) : 1231 - 1236.
  • 10林树宽,杨玫,乔建忠,王国仁.一种非线性非平稳时间序列预测建模方法[J].东北大学学报(自然科学版),2007,28(3):325-328. 被引量:9

二级参考文献15

  • 1胡桥,何正嘉,张周锁,訾艳阳.经验模式分解模糊特征提取的支持向量机混合诊断模型[J].西安交通大学学报,2005,39(3):290-294. 被引量:7
  • 2WENG C,RAY A.Robust wide-range control of steam-electric power plants [ J].IEEE Trans on Control System Technology,1997,5(1):74-88.
  • 3ASTROM K J,BELL R D.A nonlinear model for steam generation processes[ C]// Proc 12 th IFA C World Congress,New York:Pergamon,1993,3:395-398.
  • 4JOHANSEN T A,MURRAY-SMITH R.The operating regime approach to nonlinear modeling and control [M]//MURRAY-SMITH R,JOHANSEN T A.Multiple Model Approaches to Modeling and Control.London:Taylor and Francis,1997:3-72.
  • 5LIU H,LI S,CHAI T.Intelligent decoupling control of power plant main steam pressure and power output [ J].lnt J Electrical Power and Energy Systems,2003,25(10):809-819.
  • 6MOHLER R R.Nonlinear System-Applications to Bilinear Control[ M].Englewood Cliffs,NJ:Prentice-Hall,1991.
  • 7MOHLER R R,RUBERTI A.Theory and Applications of Variable Structure Systems [ M].New Jersey:Academic Press,1972.
  • 8Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis[ J ].Proceedings of the Royal Society of london:Series A,1998,454:903-995.
  • 9Huang N E,Wu MC,Qu WD,et al.Applications of Hilbert-Huang transform to non-stationary financial time series analysis[ J ].Applied Stochastic Models in Business and Industry,2003,19(3):245-268.
  • 10Huang N E,Shen Z,Long S R,et al.A new view of nonlinear water waves:the Hilbert spectrum[J].Annual Review of Fluid Mechanics,1999,31(3):417-457.

共引文献14

同被引文献76

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部