期刊文献+

Loop Subdivision Surface Based Progressive Interpolation 被引量:18

Loop Subdivision Surface Based Progressive Interpolation
原文传递
导出
摘要 A new method for constructing interpolating Loop subdivision surfaces is presented. The new method is an extension of the progressive interpolation technique for B-splines. Given a triangular mesh M, the idea is to iteratively upgrade the vertices of M to generate a new control mesh M such that limit surface of M would interpolate M. It can be shown that the iterative process is convergent for Loop subdivision surfaces. Hence, the method is well-defined. The new method has the advantages of both a local method and a global method, i.e., it can handle meshes of any size and any topology while generating smooth interpolating subdivision surfaces that faithfully resemble the shape of the given meshes. The meshes considered here can be open or closed. A new method for constructing interpolating Loop subdivision surfaces is presented. The new method is an extension of the progressive interpolation technique for B-splines. Given a triangular mesh M, the idea is to iteratively upgrade the vertices of M to generate a new control mesh M such that limit surface of M would interpolate M. It can be shown that the iterative process is convergent for Loop subdivision surfaces. Hence, the method is well-defined. The new method has the advantages of both a local method and a global method, i.e., it can handle meshes of any size and any topology while generating smooth interpolating subdivision surfaces that faithfully resemble the shape of the given meshes. The meshes considered here can be open or closed.
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2009年第1期39-46,共8页 计算机科学技术学报(英文版)
基金 supported by NSF of USA under Grant No.DMI-0422126 The last author is supported by the National Natural Science Foundation of China under Grant Nos.60625202,60533070.
关键词 geometric modeling Loop subdivision surface progressive interpolation geometric modeling, Loop subdivision surface, progressive interpolation
  • 相关文献

参考文献22

  • 1Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design, 1978, 10(6): 350 355.
  • 2Doo D, Sabin M. Behaviour of recursive division surfaces near extraordinary points. Computer-Aided Design, 1978, 10(6): 356-360.
  • 3Loop C. Smooth subdivision surfaces based on triangles [Master' Thesis]. Dept. Math., Univ. Utah, 1987.
  • 4Dyn N, Levin D, Gregory J A. A butterfly subdivision scheme for surface interpolation with tension control. A CM Trans. Graphics, 1990, 9(2): 160-169.
  • 5Zorin D, SchrSder P, Sweldens W. Interpolating subdivision for meshes with arbitrary topology. Computer Graphics, Ann. Conf. Series, 1996, 30: 189-192.
  • 6Kobbelt L. Interpolatory subdivision on open quadrilateral nets with arbitrary topology. Comput. Graph. Forum, 1996, 5(3): 409-420.
  • 7Halstead M, Kass M, DeRose T. Efficient, fair interpolation using Catmull-Clark surfaces. In Proc. SIGGRAPH 1993, Anaheim, USA, August 1-6, 1993, pp.47 61.
  • 8Nasri A H. Surface interpolation on irregular networks with normal conditions. Computer Aided Geometric Design, 1991, 8:89 -96.
  • 9Zheng J, Cai Y Y. Interpolation over arbitrary topology meshes using a two-phase subdivision scheme. IEEE Trans. Visualization and Computer Graphics, 2006, 12(3): 301-310.
  • 10Lai S, Cheng F. Similarity based interpolation using Catmull- Clark subdivision surfaces. The Visual Computer, 2006, 22(9): 865-873.

同被引文献148

引证文献18

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部