期刊文献+

权函数神经网络及在选矿厂能耗预测中的应用 被引量:2

Neural Networks with Weight Functions and Application in Energy Consumption Forecasting of Ore Dressing Plant
下载PDF
导出
摘要 针对大孤山选矿厂磁选工艺过程的多指标强耦合、时变、非线性和大滞后等特点,使基于数学模型的常规预测方法难以应用问题,提出一种新型的权函数神经网络建立能源消耗预测模型。该模型网络拓扑结构只有输入输出两层,网络权值由传统的常数改为权函数。在权函数构造上,结合选矿厂实际生产过程中所提供的生产数据,根据数据样本间隔距离的大小,分别采用不同的函数作为网络的权函数。训练算法仿真实验表明,该算法计算量小,且建模误差为10-2数量级,取得很好的预测效果,从而克服了传统算法局部极小与收敛速度慢的问题。 The characteristics of multivariate strong coupling, time varying, nonlinear and long time-delay in the magnetic separation process of Dagushan Ore Dressing Plant, make it difficult to use the conventional methodologies of optimal control based on mathematical model. With simple network topology constituted by input layer and output layer only, the new neural network with weight functions is proposed. The weight is function instead of traditional constant. On constructing of weight function, according to the production data in actual production process of Ore Dressing Plant and the gap of these data, different interpolation functions are selected as the weight functions. Simulation examples show the good performance of this method that little calculation work, high calculation speed, with no local minimum and slow convergence problems. Model mentioned above has minor error and the better prediction effect is obtained.
出处 《吉林大学学报(信息科学版)》 CAS 2009年第1期73-78,共6页 Journal of Jilin University(Information Science Edition)
基金 国家科技支撑基金资助项目(2007BAE17B04)
关键词 神经网络 能耗预测 权函数 neural networks energy consumption forecasting weight function
  • 相关文献

参考文献10

二级参考文献39

共引文献28

同被引文献21

  • 1梁艳春,聂义勇.从科学研究方法论看人工神经网络研究的发展[J].吉林大学学报(信息科学版),2002,20(1):59-62. 被引量:14
  • 2管恩政,常晓宇,王喆,周春光.快速频繁序列模式挖掘算法[J].吉林大学学报(理学版),2005,43(6):768-772. 被引量:7
  • 3HAN Jia-wei,KAMBER M.数据挖掘:概念与技术[M].北京:机械工业出版社,2007.
  • 4ROSENBLATT F.The Perceptron:A Probabilistic Model for Information Storage and Organization in the Brain[J].Psychological Review,1958,65(6):386-408.
  • 5WIDROW B,HOFF M E.Adaptive Switching Circuits[EB/OL].[2009-08-18].http://www-isl.stanford.edu/~widrow/papers/c1960adaptiveswitching.pdf.
  • 6MCCULLOCH W C,PITTS.A Logical Calculus of Ideas Immanent in Nervous Activity[J].Bulletin of Mathematical Biophysics,1943,5(4):115-133.
  • 7ZHAO Qian-kun,CHENG Ling,BHOWMICK SOURAV S,et al.XML Structural Delta Mining:Issues and Challenges[J].Data and Knowledge Engineering Journal,2006,59(3):627-651.
  • 8WANG L,CHEUNG D W,MAMOULIS N.An Efficient and Scalable Algorithm for Clustering XML Documents by Structure[J].IEEE Transactions on Knowledge and Data Engineering,2004,16(1):82-96.
  • 9LEUNG HO-PONG,CHUNG Fu-lai,STEPHEN C F CHAN.XML Document Clustering Using Common Xpath[C]∥Web Information Retrieval and Integration,2005(WIRI '05).Washington,DC,USA:IEEE Computer Society,2005:91-96.
  • 10ALEXANDRE TERMIER,MARIE-CHRISTINE ROUSSET,MICHELE SEBAG.Tree Finder:A First Step Towards XML Data Mining[C]∥Proceedings of the 2002 IEEE International Conference on Data Mining.Washington:IEEE Computer Society,2002:450-457.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部