期刊文献+

基于多目标粒子群的对接函数综合 被引量:1

Multi-objective PSO Optimized Consensus Scoring for Molecular Docking
下载PDF
导出
摘要 针对虚拟筛选过程中对接打分函数适应度低及已有数据集不平衡特点,本文提出了基于多目标粒子群优化的对接函数综合评价方法,以求解多个目标和约束条件下的分类器集合权重分配,为解决训练集不平衡状态下分类器优化问题提供了一种有效的方法。实验结果表明该算法提高了虚拟筛选过程中对接打分函数的应用效果。 Focused on the insufficient adaptation of different principles based scoring functions in virtual screening, the paper proposed a novel multi-objective PSO optimized weight vector construction algorithm for classifier ensemble under multiple objects and constraints. The classifying performance of binding decoy conformation from the imbalaneed scoring data showed that the application effect of docking functions in virtual screening is promoted by the algorithm.
出处 《微计算机信息》 2009年第3期197-199,共3页 Control & Automation
基金 国家科技基础条件平台项目"生物信息学网络计算应用系统"(2005DKA64001)
关键词 对接 打分函数 综合 粒子群 支持向量机集合 多目标 Docking Scoring function Consensus PSO SVM Ensemble Multi-objective
  • 相关文献

参考文献13

  • 1Kellenberger, E, Rodrigo, J, Muller, P, et al. Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins 2004, 57:225-242
  • 2Kontoyianni M, McClellan L. M,Sokol G. S. Evaluation of docking performance: Comparative data on docking algorithms [J]. J. Med. Chem. 2004, 56: 558-565.
  • 3Wang R, Lu Y, Wang S. Comparative evaluation of 11 scoring functions for molecular docking [J]. J. Med. Chem. 2003, 46:2287- 2303.
  • 4Reiji Teramoto and Hiroaki Fukunishi. Supervised consensus scoring for docking and virtual screening [J]. J. Chem. Inf. Model. 2007, 47:526-534
  • 5Pilsung Kang and Sungzoon Cho. EUS SVMs: Ensemble of Under-Sampled SVMsfor Data Imbalance Problems. [C]// Proceedings of 13th International Conference on neural information processing, Berlin-Heidelberg: Springer-Verlag, 2006:837-846
  • 6Hong Hu, Jiuyong Li, Ashley Plank, et al. A Comparative Study of Classification Methods for Microarray Data Analysis. [C]//Proceedings of the fifth Australasian conference on Data mining and analystics, Sydney: Australian Computer Society,2006:33-37
  • 7周媛,张颖超,刘雨华.基于支持向量机的综合评估方法的应用研究[J].微计算机信息,2006,22(02X):225-227. 被引量:12
  • 8XiaoWang, HanWang.Classification by evolutionary ensembles [J]. Pattern Recognition,2006, 39:595-607
  • 9Li-ying Yang and Zheng Qin. Combining Classifiers with Particle Swarms. Advances in Natural Computation. [C]// Proceedings of Advances in Natural Computation, Berlin-Heidelberg: Springer-Verlag, 2005:756-763
  • 10Ajith Abraham, Crina Grosan, Sang Yong Han, et al. Evolutionary Multiobjective Optimization Approach for Evolving Ensemble of Intelligent Paradigms for Stock Market Modeling. [C]//Proceedings of the MICAI, Berlin-Heidelberg: Springer-Verlag, 2005: 673-681

二级参考文献4

  • 1李猛,杨钰,奥凯军,李德营.基于GPIB总线的温湿度综合实验系统的设计[J].微计算机信息,2005,21(2):134-135. 被引量:4
  • 2VladimirN Vapnik著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 3Chih-Wei Hsu and Chih-Jen Lin.A Comparison on Methods for Multi-class Support Vector Machines[R].Taipei,Taiwan:Department of Computer Science and Information Engineering,National Taiwan University,2001.
  • 4Suykens J.A.K.,Van Gestel T.,De Brabanter J.等.LeastSquares Support Vector Machines.World Scientific.

共引文献11

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部