期刊文献+

加权Fisher线性判别法在非平衡医学数据集中的应用 被引量:2

Weighted Fisher Linear Discriminant Model with Imbalanced Medical Datasets Learning
下载PDF
导出
摘要 目的:介绍加权Fisher线性判别法在非平衡医学数据集中的应用。方法:在两类分类问题中,当两类样本的协方差矩阵不同时,样本不平衡会导致Fisher线性判别的性能下降,使用加权Fisher线性判别法对两类样本同时进行不同倍数的过抽样,可促使两类的样本数目趋向平衡。结果:利用社区居民的血糖流行病学调查资料进行验证,加权Fisher线性判别法较传统Fisher线性判别法的灵敏度高,分类性能明显提高。结论:加权Fisher线性判别法可适用于非平衡数据集,算法简单高效,且基本不增加计算复杂度。 Objective: To introduce the application of Weighted Fisher Linear Discriminant Model in imbalanced medical datasets classified. Methods. Majority of two-class classification methods usually assume that their training sets are well-balanced, but when the two sample covariance matrices are not identical , class imbalance has a negative effect on the performance of Fisher linear discriminant. A weighted Fisher linear discriminant is introduced for reducing the negative effects of the class imbalance. Results. Using the DM data sets from the community, the new algorithm was compared with the conventional method. The experimental results show that the new algorithm performs better than the old one. Conclusion. The weighted Fisher linear discriminant displays better performance in the imbalanced medical datasets for its simple algorithm, effectiveness and well algorithm complexity.
出处 《数理医药学杂志》 2009年第1期59-61,共3页 Journal of Mathematical Medicine
基金 2008年度广东省医学科研基金(B2008082)
关键词 加权 FISHER线性判别 非平衡医学数据集 weighted fisher linear discriminant imbalanced medical datasets
  • 相关文献

参考文献6

二级参考文献89

  • 1Weiss G M. Mining with Rarity: A Unifying Framework. Newsletter of the ACM Special Interest Group on Knowledge Discovery and Data Mining, 2004,6(1)
  • 2Guo Hongyu, Viktor Herna L. Learning from Imbalanced Data Sets with Boosting and Data Generation: The DataBoost-IM Approach. Newsletter of the ACM Special Interest Group on Knowledge Discovery and Data Mining, 2004,6(1)
  • 3Raskutti B, Kowalczyk A. Extreme Rebalancing for SVMs: a case study. Newsletter of the ACM Special Interest Group on Knowledge Discovery and Data Mining, 2004,6 (1)
  • 4Batista G E A P A, Prati R C, Monard M C. A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data. Newsletter of the ACM Special Interest Group on Knowledge Discovery and Data Mining, 2004,6( 1 )
  • 5Jo T,Japkowicz N. Class Imbalance versus Small Disjuncts. Newsletter of the ACM Special Interest Group on Knowledge Discovery and Data Mining, 2004, 6 (1)
  • 6Phua C, Alahakoon D, Lee V. Minority Report in Fraud Detection:Classification of Skewed Data. Newsletter of the ACM Special Interest Group on Knowledge Discovery and Data Mining,2004, 6(1)
  • 7Petrushin V A,Kao A,Khan L. The 4th Intl. Workshop on Multimedia Data Mining(MDM/KDD2003), Newsletter of the ACM Special Interest Group on Knowledge Discovery and Data Mining,2004,6(1)
  • 8Dolores del Castillo M,Serrano Jose lgnacio. A Multistrategy Approach for Digital Text Categorization from Imbalanced Documents. Newsletter of the ACM Special Interest Group on Knowledge Discovery and Data Mining, 2004,6 (1)
  • 9Zheng Zhaohui,Wu Xiaoyun,Srihari Rohini. Feature Selection for Text Categorization on Imbalanced Data. Newsletter of the ACM Special Interest Group on Knowledge Discovery and Data Mining,2004,6(1)
  • 10Huang K,et al. Learning Classifiers from Imbalanced Data Based on Biased Minimax Probability Machine, Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proc. of the 2004 IEEE Computer Society Conf. on ,2004,2: Ⅱ-558~Ⅱ -563

共引文献95

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部