期刊文献+

基于ICA和KPCA人耳识别技术比较

The Comparison of Human Ear Recognition Technology based on ICA and KPCA
下载PDF
导出
摘要 人耳识别技术是一种新的生物识别技术,它以人耳作为识别媒介来进行身份鉴别,但人耳识别的相关理论和方法还不太完善。首先介绍了独立成分分析方法(ICA)和基于核的主成分分析方法(KPCA)的基本原理,然后通过实验得到在分别采用ICA和KPCA方法时,在不同人耳库上的特征提取时间以及采用不同分类器时的人耳识别率。最后通过分析比较实验结果得到基于ICA方法的识别技术和基于KPCA方法的识别技术各自的优点和缺点。 Human ear recognition is a new technology of biologic recognition and it use human ear as the recognition media to identify different people, but the mature theory or method has not been found yet. First, this paper describes the basic principles of independent component analysis (ICA) and kernel principal component analysis (KPCA); then we use experiment to get the time of feature extraction using different human ear storage and the human ear recognition ratio using different classifiers when we use the method ICA or KPCA separately. In the end, it describes the advantages and defaults t through comparing and analyzing the experiment result which base on ICA recognition method and KPCA recognition method.
作者 魏冲 周海英
出处 《电脑开发与应用》 2009年第2期14-15,18,共3页 Computer Development & Applications
关键词 生物识别 人耳识另q ICA KPCA 分类器 biologic recognition, human ear recognition, ICA, KPCA, classifier
  • 相关文献

参考文献6

  • 1Hyvarinen A. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis[J]. IEEE Transactions on Neural Networks, 1999,10(3): 626-634.
  • 2Johns S T,Nello Cristianina著.赵玲玲译.模式分析的核方法[M].北京:机械工业出版社,2006.
  • 3高照锋,冯慧.基于主成分分析的图像匹配方法[J].武汉大学学报(理学版),2002,48(5):558-560. 被引量:4
  • 4Sun Z K,Shen Z K. The Handle and Apply of Digital Image [M]. Beijing: Na Tional Defenee Industry Publishing, 1985.
  • 5Phillips P J. Support Vector Machines Applied to Faces Recognition[J]. Pattern Recognition, 1998 ( 11 ) : 803-809.
  • 6Wiskott L. Phantom Faces for Face Analysis [J] Pattern Recognition, 1997,30(6): 837-846.

二级参考文献2

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部