期刊文献+

一种磨损预测的优化算法研究 被引量:5

Research on a Opimal Algorithm for the Prediction of Wear Loss
下载PDF
导出
摘要 根据机械部件磨损机理复杂、磨损量预测难精确的特点,提出基于免疫粒子群参数优化的最小二乘支持向量机方法预测磨损量.该算法采用免疫粒子群优化最小二乘支持向量机建模参数,避免了算法陷入局部最优解,实现了精确度高、泛化能力强的磨损量预测模型.对轴承钢试件磨损进行了试验研究,试验数据分析结果表明,基于免疫粒子群的最小二乘支持向量机预测方法优于前向反馈神经网络算法、遗传算法及蚁群算法,预测误差较小,具有很好的预测能力. Because the wear loss is complicated and difficult to measure, a method of parameter optimized least square support vector machine is introduced to predict wear loss. The optimized algorithm is immunity-particle swarm which could avoide getting into local best place. The optimized model of wear loss was proposed. The training and measuring data set was obtained from an experiment about wear loss. The prediction results of the optimized LS-SVM and neural network, ant colony optimization, genetic algorithm were compared, it shows that the immuni- ty-particle swarm LS-SVM model is feasible and accurate for the prediction of wear loss.
出处 《摩擦学学报》 EI CAS CSCD 北大核心 2008年第6期562-566,共5页 Tribology
基金 国家高技术研究发展计划(863计划)资助项目(2006AA04Z427) 国家自然科学基金委员会与中国民用航空总局联合资助项目(60672164)
关键词 磨损量 最小二乘支持向量机 免疫粒子群 优化 wear loss, least square support vector machine, immunity-particle swarm, optimization
  • 相关文献

参考文献2

二级参考文献18

  • 1[2]A. Noori-Khajavi and R. Komanduri. Frequency and Time Domain Analysis of Sensor Signals in Drilling-Ⅱ. Investigation on Some Problems Associated with Sensor Integration[J]. Int. J. Mach. Tools Manufact.1995,35(6):795~815
  • 2[3]S.K.Choudhury, V. K. Jain and Ch. V. V. Rama Rao. On-line Monitoring of Tool Wear in Turning Using a Neural Network[J]. International Journal of Machine Tools & Manufacture 1999,39
  • 3[4]R. G. Silva, R. L. Reuben and K. J. Baker. Tool Wear Monitoring of Turning Operations by Neural Network and Expert System Classification of a Feature Set Generated From Multiple Sensors[J]. Mechanical Systems and Signal Processing1998,12(2):319~33
  • 4[1]A. Noori-Khajavi and R. Komanduri. Frequency and Time Domain Analysis of Sensor Signals in Drilling-Ⅰ. Correlation with Drill Wear[J]. Int. J. Mach. Tools Manufact.1995,35(6):777~793
  • 5Boeing Company.Boeing-737 aircraft maintenance manual[M].US:Boeing Company,1996:1231-1247.
  • 6Tharayil M L,Alleyne A G.Modeling and control for smart mesoflap aero elastic control[J].Mechatronics IEEE/ASME Transactions,2004,9(1):30-39.
  • 7Vapnik V N,The nature of statistical learning theory[M].New York:Springer,1999:133-152.
  • 8Vapnik V N,Golowich S E,Smola A,et al.Support vector method for function approximation,regression estimation,and signal processing[C]//NIPS'S,San Mateo,CA:MIT Press,1996:739-745.
  • 9Suykens J T,Van G 1.Least squares support vector machines[M].Singapore:Singapore World Scientific,2002:13-15.
  • 10Van G L,Suykens J T.Financial time series prediction using least squares support vector machines with in the evidence framework[J].IEEE Transaction on Neural Networks,2001,12(4):809-821.

共引文献12

同被引文献59

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部