期刊文献+

基于仿射不变性特征的视点空间划分 被引量:4

Viewpoint space partitioning based on affine invariant features
原文传递
导出
摘要 为了简化三维物体的识别过程,提高三维物体识别的识别率,该文利用Multi-scale autoconvolution、Trace变换、Zernike矩3种仿射不变性特征,对飞机、汽车、人等三维物体进行视点空间划分,用尽可能少的不等间隔的三维物体的二维投影图像来表达三维物体,并以此为依据进行三维物体识别。在此基础上提出一种针对不同类型物体的仿射不变性特征提取策略,并建立一个实现三维物体任意姿态识别的软件系统平台,应用Princeton形状标准库中的部分模型对该平台进行测试。结果表明,该方法能够取得较好的识别效果,识别率在90%以上。 The viewpoint space of 3-D objects, such as aircraft, automobiles, and humans is partitioned using three affine invariant features based on a multi-scale autoconvolution, a trace transform, and the Zernike moment to express the 3-D objects within minimum two-dimensional projective images. The images are then nonuniformly projected for object recognition to simplify the 3-D recognition process and increase the recognition rate of 3-D objects. The paper presents an affine invariant feature extraction strategy for different 3-D objects that can recognize arbitrary postures of the 3-D object. Tests with models from the Princeton shape benchmark show that the good recognition effect can be achieved by the proposed method and the recognition rate is great than 90%.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第1期53-56,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(60502013) 国家"八六三"高技术项目(2006AA01Z115)
关键词 模式识别 三维识别 视点空间划分 仿射不变性特征 pattern recognition 3-D object recognition viewpointspace partition affine invariant feature
  • 相关文献

参考文献6

  • 1Shilane P, Min P, Kazhdan N, et al. The princeton shape benchmark [C]//Proceeding of the IEEE Shape Modeling International 2004(SMI'04). Washington DC: IEEE Computer Society, 2004:167 - 178.
  • 2叶斌,彭嘉雄.Zernike矩不变性分析及其改进(英文)[J].红外与激光工程,2003,32(1):37-41. 被引量:10
  • 3Rahtu E, Salo M, Heikkilci J. Affine invariant pattern recognition using multiscale autoconvolution [J]. IEEE Trans on Pattern and Analysis and Machine Intelligence, 2005, 27(6): 908-918.
  • 4Rahtu E, Heikkila J. Object classification with multi-scale autoconvolution [C]//Proceedings of the 17th International Conference on Pattern Recognition (ICPR'04). Washington DC: IEEE Computer Society, 2004, 3 : 37 - 40.
  • 5Petrou M, Kadyrov A. Affine invariant features from the trace transform [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(1) : 30 - 44.
  • 6Hsu C W, Chang C C, Lin C J. A practical guide to support vector classification [EB/OL]. (2007-09-10). http:// www. csie. ntu. edu. tw/-cjlin.

二级参考文献5

  • 1[1]Teh C H, Chin R T. On image analysis by the methods of moments[J]. IEEE Trans Pattern Anal Machine Intell, 1988, 10(4):496-513.
  • 2[2]Khotanzad A, Hong Y H. Invariant image recognition by Zernike moments[J]. IEEE Trans Pattern Anal Machine Intell, 1990, 12(5):489-498.
  • 3[3]Prokop R J, Reeves A P. A survey of moment-based techniques for unoccluded object representation and recognition[J]. Graphical Models Image Process, 1992, 54(5):438-460.
  • 4[4]Yong-Sung Kim, Whoi-Yul Kim. Content-based trademark retrieval system using visually salient feature[J]. J Image Vision Computer, 1998, 16:12-13.
  • 5[5]Zernike F. Beugungstheorie des schneidenverfahrens und seiner verbesserten form, derphasenkontrastmethode[J]. Physica, 1934, 1:689-704.

共引文献9

同被引文献43

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部