期刊文献+

EMC变形机理及在空间展开结构中的应用 被引量:5

Deformation Mechanism of EMC Materials and Applications for Future Deployable Space Structure
下载PDF
导出
摘要 形状记忆聚合物复合材料(EMC)作为一类新型功能材料,具有高极限应变、高比刚度和低密度等优点,在未来空间展开结构中极具应用潜力。首先介绍了EMC折叠变形机理及作为空间展开材料所具有的优缺点,在此基础上分析比较了现有屈曲理论模型在分析EMC折叠变形时存在的问题,然后介绍了用EMC设计展开结构目前国际上所取得的一些最新研究进展。由于EMC形状折叠和展开是通过热激励实现的,因此对EMC的热源系统设计也进行了专门分析。最后,对EMC用于空间展开结构亟待解决的问题和今后的一些研究方向进行了展望。 As a new class of functional materials, elastic memory composite (EMC) materials have great potentials in future space deployable structures due to the advantages of high strain-to-failure, high specific modulus, and low density. In this paper, some recent developments in this field were reviewed. EMCs can realize much high packaging strains without damage and automatically recover to their original shapes when subjected to a specific thermomechanieal cycle. Experimental researches have revealed that microbuckling and post-microbuckling responses of compressed fibers in the soft matrix are the primary deformation mechanism of EMCs to realize higher packaging strains than traditional composites. However, a thorough understanding about the deformation mechanism of EMCs has not yet been achieved. In this paper, the classical microbuekling solutions and some new developed models were discussed, and their applicability for predicting microbuckling response in EMC materials during packaging and deployment were assessed. Moreover, some recent developments of EMC structures in deployable industry were introduced. Since the heating system is critical for EMC deployable structures, it was also discussed specially. Finally, future investigations on EMC materials in space deployable technique were suggested.
出处 《宇航学报》 EI CAS CSCD 北大核心 2009年第1期305-309,共5页 Journal of Astronautics
基金 国家自然科学基金(60532070)
关键词 形状记忆聚合物复合材料 空间展开 折叠变形 屈曲模型 热源系统 Elastic memory composite Space deployment Packaging deformation Buckling model Heating system
  • 相关文献

参考文献16

  • 1Campbell D, Lake M S, Scberbarth M R, et al. Elastic memory composite materials: an enabling technology for future furable space structures[C]~~ 46th Structural Dynamics, and Materials Conference, Austin, Texas, 2005,
  • 2Lendlein A, Kelch S. Shape-memory Polymers[ M]. Angew Chem Int. Ed 2002,41:2034 - 2057.
  • 3Francis W H, Lake M S, Hinkle J S. A review of classical fiber microbuckling analytical solutions for use with elastic memory composites [J]. AIAA Journal,2006, AIAA Paper No. 2006- 1764.
  • 4Campbell D. Deployment precision and mechanics of elastic memory composites[ J]. AIAA Journal,2003, AIAA Paper No. 2003 - 1495.
  • 5Campbell D, Barrett R, Lake M S, et al. Development of a novel, passively deployed solar array[ J]. AIAA Journal, 2006, AIAA Paper No. 2006 - 2080.
  • 6Tupper M, Gall K, Mikulas M, et al. Developments in elastic memory composite materials for spacecraft deployable structures IEEE[J]. 2001,5:2541 - 2547.
  • 7Murphey T W, Meink T, Mikulas M M. Some micromechanics considerations of the folding of rigidizable composite materials[J]. AIAA Journal,2001, AIAA Paper No. 2001 - 1418.
  • 8Campbell D, Maji A K. Deployment precision and mechanics of elastic memory composites[J]. AIAA Journal, 2003, AIAA Paper No. 2003 - 1495.
  • 9Dow N F, Rosen B W. Evaluations of Filament-reinforced Composites for Aerospace Applications[ R]. NASA CR - 207, April 1965.
  • 10Timoshenko S. Theory of Elastic Stability[M]. McGraw-Hill Book Co., Inc., 1936: 109-112.

同被引文献58

引证文献5

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部