期刊文献+

基于QPSO的二维模糊最大熵图像阈值分割方法 被引量:8

2D Fuzzy Maximum Entropy Image Threshold Segmentation Method Based on QPSO
下载PDF
导出
摘要 针对运用图像分割方法求取阈值时存在的计算复杂、时间长、实用性差等问题,提出一种新的二维最大熵图像分割方法,该方法利用基于量子行为的微粒群算法对图像的二维阈值空间进行全局搜索,并将搜索到的二维熵最大值所对应的点灰度-区域灰度均值作为阈值进行图像分割。实验结果表明,该方法具有一定优越性,在执行时间与收敛性方面均得到较理想的分割效果。 Aiming at the problems such as complex calculation, long executive time, and worse practicability when using image segmentation method to seek threshold, a novel 2D maximum entropy image segmentation method is proposed, which uses Quantum-behaved Particle Swam Optimization(QPSO) algorithm to conduct global search of 2D image threshold space, and takes the gray scale value of pixel and the gray scale mean value of region corresponding to 2D maximum entropy value as the threshold for image segmentation. Experimental results show this method has some advantages in aspects of executive time and astringency.
作者 田杰 曾建潮
出处 《计算机工程》 CAS CSCD 北大核心 2009年第3期230-232,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60674104)
关键词 图像分割 二维模糊最大熵 量子行为的微粒群优化算法 image segmentation 2D fuzzy maximum entropy Quantum-behaved particle Swam Optimization(QPSO) algorithm
  • 相关文献

参考文献7

  • 1Esquef I, Albuquerque M. Nonextensive Entropic Image Thresholding[C]//Proc. of the XV Brazilian Symposium on Computer Graphics and Image. [S.l.]: IEEE Press, 2002.
  • 2Leung C K. Image Segmentation by Edge Pixel Classification with Maximum Entropy[C]//Proc. of 2001 Int'l Symposium on Intelligent Multimedia Video and Speech. [S.l.]: IEEE Press, 2001.
  • 3马剑英,张晓娜.基于免疫遗传算法的图像多阈值分割[J].微计算机信息,2007(3):309-311. 被引量:12
  • 4宋翠家,龙建忠,罗代升.基于遗传算法的模糊熵多阈值图像分割[J].仪器仪表学报,2004,25(z1):572-573. 被引量:4
  • 5Brink A. Thresholding of Digital Images Using Two-dimensional Entropies[J]. Pattern Recognition, 1992, 25(8): 803-808.
  • 6Sun Jun, Xu Wenbo. A Global Search Strategy of Quantum Behaved Particle Swarm Optimization[C]//Proc. of the IEEE Conf. on Cybernetics and Intelligent Systems. [S.l.]: IEEE Press, 2004.
  • 7Sun Jun, Feng bin, Xu Wenbo. Particle Swarm Optimization with Particles Having Quantum Behavior[C]//Proc. of the Congress on Evolutionary Computation. [S. l.]: IEEE Press, 2004.

二级参考文献8

共引文献12

同被引文献47

引证文献8

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部