期刊文献+

基于子空间分解的多通道盲解卷积算法 被引量:9

Algorithm for multichannel blind deconvolution based on subspace decomposition
下载PDF
导出
摘要 针对卷积混合信号,提出了一种新的多通道盲解卷积算法,该算法首先利用子空间分解方法,将信号卷积混合模型变换成线性混合模型,然后利用线性混合盲分离算法分离出源信号。该算法相对频域盲解卷积算法来说无需解决线性混合盲分离中存在的幅度和排列顺序的模糊性问题,而且该算法不要求信号独立同分布,只要求各源信号统计独立即可。因此,该算法可以直接在中频对观察信号进行处理。计算机仿真结果表明,该算法不仅能对不同频不同调制方式的通信信号进行盲解卷积,而且对同频同调制的通信信号,该算法同样有效。 Aim at the blind separation of convolution mixture signals, a novel algorithm for multi-channel blind deconvolution was presented. Firstly, this algorithm transforms the convolution mixture into the instantaneous linear mixture by subspace decomposition. The second step is to separate the estimated linearized signals and to obtain the source signals by using the blind source separation algorithm for instantaneous linear mixture. This algorithm needs not to solve the problem of the scale and permutation ambiguity existing in the instantaneous linear blind separation relative to the frequency domain method for blind deconvohition. Moreover, the algorithm doesn't need signal is independent identically distributed(i.i.d), only needs the sources are statiscally independent each other. Therefore the algorithm can process the mixing signal in intermediate frequency. Simulation results show that this algorithm can blind deconvolute not only the signals with the different carrier frequencies and different symbol rates, but also that with same carder frequencies and same symbol rates.
出处 《通信学报》 EI CSCD 北大核心 2009年第1期25-30,共6页 Journal on Communications
基金 国家自然科学基金资助项目(60702060) 高等学校学科创新引智计划资助项目(B08038)~~
关键词 盲信号处理 盲解卷积 子空间分解 多通道 blind signal processing blind deconvolution subspace decomposition multi-channel
  • 相关文献

参考文献13

  • 1胡可,汪增福.一种基于时频分析的语音卷积信号盲分离算法[J].电子学报,2006,34(7):1246-1254. 被引量:12
  • 2姜卫东,陆佶人,张宏滔,高明生.基于相邻频点幅度相关的语音信号盲源分离[J].电路与系统学报,2005,10(3):1-4. 被引量:13
  • 3DAPENA A, SERVIERE C, CASTEDO L. Inversion of the sliding Fourier transform using only two frequency bins and its application to source separation[J]. Signal Processing, 2003, 83: 453-457.
  • 4LARUE A, MARS J I, JUTTEN C. Frequency-domain blind deconvolution based on mutual information rate[J]. IEEE Trans on Signal Processing, 2006, 54(5):1771-1781.
  • 5ARAKI S, MUKAI R, MAKINGO S, et al. The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech[J]. IEEE Tran on Speech and Audio Processing, 2003, 11(2):109-116.
  • 6CARDOSO J F. Equivariant adaptive source separation[J]. IEEE Trans on Signal Processing,1996, 44(12): 3017-3029.
  • 7BINGHAM E, HYVARINEN A. A fast fixed-point algorithm for independent component analysis of complex valued signals[J]. International Journal of Neural Systems, 2000, 10(1): 1-8.
  • 8TORKKOLA K. Blind separation of delayed sources based on information maximization[A]. ICASSP of IEEE[C]. Atlanta: IEEE, 1996. 3509-3512.
  • 9TUGNAIT J K. Adaptive blind separation of convolutive mixtures of independent linear signals[A]. ICASSP of IEEE[C]. Seattle, WA :IEEE, 1998.2097-2100.
  • 10谭丽丽,韦岗.卷积混叠信号的最小互信息量盲分离算法[J].通信学报,1999,20(10):49-55. 被引量:14

二级参考文献39

共引文献43

同被引文献57

引证文献9

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部