期刊文献+

结合USFFT Curvelet变换的各向异性扩散图像去噪模型 被引量:9

Image de-noising model integrating anisotropic diffusion with USFFT Curvelet transform
下载PDF
导出
摘要 提出了一种结合USFFTCurvelet变换的各向异性扩散图像去噪模型。它有机结合了Curvelet变换和各向异性扩散(P-M扩散)两者的优点。通过P-范数方法选择合适的梯度阈值K,P-M扩散过程通过处理经过Curvelet变换得到的图像的不同尺度的Curvelet系数矩阵,实现了建立在对图像多尺度分析的基础上的新P-M扩散模型。实验表明,新模型的处理结果能有效避免传统P-M扩散出现的阶梯效应,同时更好地保留图像的纹理和细节。 An image de-noising model by integrating anisotropic diffusion with USFFF Curvelet transform was proposed, which combined the strongpoint of Cnrvelet transform with anisotropic diffusion (P-M diffusion). By choosing appropriate gradient threshold K through p-norms and carrying out the P-M diffusion process depend on the different scale matrixes of Curvelet coefficient of the image from Curvelet transform iterations, as a result, the improved model made it possible to carry out the new P-M diffusion de-noising process based on multi-scale analysis of the image. The experiment results have demonstrated that the model can avert the staircasing effect in the traditional P-M diffusion effectively and keep the textures and details of images better.
出处 《通信学报》 EI CSCD 北大核心 2009年第1期82-87,共6页 Journal on Communications
基金 湖南省自然科学基金资助项目(08JJ3131)~~
关键词 图像去噪算法 各向异性扩散 CURVELET变换 P—M扩散 image de-noising algorithm anisotropic diffusion Curvelet transform P-M diffusion
  • 相关文献

参考文献13

  • 1KOEDERINK J. The structure of image[J]. Biol, Cyber, 1985, (50): 363-370.
  • 2WITKIN A. Scale-space faltering[A]. Proceedings of the International Joint conference on Artificial Intelligence[C]. ACM Inc, 1983,1019- 1021.
  • 3PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12(7): 629-639.
  • 4仵冀颖,阮秋琦.偏微分方程在图像去噪中的应用[J].计算机工程与应用,2006,42(22):69-71. 被引量:10
  • 5WEI G W. Generalized Perona-Malik equation for image restoration[J]. IEEE Signal Processing Letters, 1999,6(7): 165-167.
  • 6CANDES E J, DONOHO D L. Curvelets-Asurprisingly Effective Nonadaptive Representation for Objects with Edges [D]. Curves and Surfaces, Nashville, TN: Vanderbilt University Press, 2000. 105-120.
  • 7VOCI F, EIHO S, SUGIMOTO N, et al. Estimating the gradient threshold in the Perona-Malic equation[J]. IEEE Signal Processing Magazine,2004:39-46,65.
  • 8STARCK J L, CANDES E J, et al. The Curvelet transform for image denoising[J]. IEEE Trans Image Proc, 2002, 11(6): 670-684.
  • 9CANDES E J, DEMANET L, DONOHO D L, et al. Fast Discrete Curvelet Transforms [R]. Applied and Computational Mathematics California Institute of Technology, 2005. 1-43.
  • 10LUO H G, ZHU L M, DING H. Coupled anisotropic diffusion for image selective smoothing[J]. Signal Processing, 2006, 86(7): 1728- 1736.

二级参考文献123

共引文献105

同被引文献72

  • 1焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报,2006,29(2):177-193. 被引量:45
  • 2姜东焕,冯象初,宋国乡.基于非线性小波阈值的各向异性扩散方程[J].电子学报,2006,34(1):170-172. 被引量:15
  • 3刘峰.基于小波变换的图像扩散滤波方法[J].中国科学(E辑),2006,36(6):668-677. 被引量:4
  • 4KOEDERINK J.The structure of image[J].Biol,Cyber,1985,(50):363-370.
  • 5WITKIN A.Scale-space filtering[A].Proceedings of the International Joint conference on Artificial Intelligence[C].ACM Inc,1983.1019-1021.
  • 6PERONA P,MALIK J.Scale-space and edge detection using anisotropic diffusion.IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(7):629-639.
  • 7J MA,PLONKA G.Combined curvelet shrinkage and nonlinear anisotropic diffusion[J].IEEE Trans on Image Process,2007,16(9):2198-2206.
  • 8CATTE F,LIONS P L,MOREL J M,et al.Image selective smoothing and edge detection by nonlinear diffusion[J].SIAM J Num,1992,29:182-193.
  • 9ZHONG J M,SUN H F.Wavelet-based multi-scale ansiotropic diffusion with adaptive statistical analysis for image restoration[J].IEEE Transactions on Circuits and Systems-I:Regual Papers.2008,55(9):2716-2725.
  • 10KINGSBURY N G.Complex wavelets for shift invariant analysis and filtering of signals[J].Appl.Comp.Harmonic Anal.2000,10(3):234-253.

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部