期刊文献+

(3+1)-维非线性发展方程新的精确解和守恒律 被引量:4

New exact solutions and conservation laws to a(3+l)-dimensional nonlinear evolution equation
下载PDF
导出
摘要 利用改进的CK直接方法,求出了(3+1)-维非线性发展方程的一般对称群、李对称及其对应的向量场,建立了方程新旧解之间的关系,同时由旧解得到了方程的许多新的精确解。由于对称和守恒律之间有密切的关系,同时找到了此方程的无穷多守恒律。 Using the modified CK's direct method, general symmetry group, Lie symmetries and corresponding vector fields of a (3+1)-dimensional nonlinear evolution equation are obtained. The relationship between new solutions and old ones of the (3+1)-dimensional nonlinear evolution equation is built by applying the results. Some new exact solutions of the (3+1)-dimensional nonlinear evolution equation are obtained. As for the close relationship between symmetries and conservation laws, the infinite conservation laws of the (3+1)-dimensional nonlinear evolution equation are found.
出处 《量子电子学报》 CAS CSCD 北大核心 2009年第1期16-22,共7页 Chinese Journal of Quantum Electronics
基金 山东省自然科学基金资助项目(2004ZX16 Q2005A01)
关键词 非线性发展方程 精确解 对称群 守恒律 nonlinear evolution equation exact solutions symmetry groups conservation laws
  • 相关文献

参考文献6

二级参考文献51

  • 1LIU XIQIANG.EXACT SOLUTIONS OF THE VARIABLE COEFFICIENT KdV AND SG TYPE EQUATIONS[J].Applied Mathematics(A Journal of Chinese Universities),1998,13(1):25-30. 被引量:25
  • 2Liu Xiqiang Jiang SongGraduate School, China Academy of Engineering and Physics, P.O. Box 2101, Beijing 100088,Dept. of Math., Liaocheng Teachers Univ., Shandong 252000. Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beiji.EXACT SOLUTIONS FOR GENERAL VARIABLE-COEFFICIENT KdV EQUATION[J].Applied Mathematics(A Journal of Chinese Universities),2001,16(4):377-380. 被引量:8
  • 3Commun. Theor. Phys, (Beijing, China) Author' Index to Volume 43 (2005)[J].Communications in Theoretical Physics,2005,44(6X):1139-1145. 被引量:4
  • 4Olver P J 1986 Application of Lie Group to Differential Equation (New York: Springer).
  • 5Bluman G W et al 1989 Symmetries and Differential Equations Appl. Math. Sci. 81 (New York: Springer).
  • 6Bluman G W and Cole J D 1969 J. Math. Mech. 18 1025.
  • 7Noether E 1918 Nachr. Kgnig. Gesell. Wissen Gottingen Math. Phys. K1 235.
  • 8Clarkson P A and Kruskal M 1989 J. Math. Phys. 30 2201.
  • 9Bluman G W and Cole J D 1974 Similarity Methods for Differential Equations Applied Mathematical Sciences (Berlin:Springer) vol 13.
  • 10Jimbo M and Miwa T 1983 Publ. Res. Inst. Math. Soc.Kyoto Univ. 19 943.

共引文献69

同被引文献18

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部