期刊文献+

基于二维Fisher线性判别的人耳识别 被引量:7

Ear Recognition Based on Two-dimensional Fisher Linear Discriminant
下载PDF
导出
摘要 针对传统二维Fisher线性判别(2DFLD)方法只使用图像矩阵的行向量作子模式的局限性,结合人耳图像的特点,提出了一种基于列向量作子模式的2DFLD的人耳识别方法。首先利用训练样本图像矩阵的列向量作子模式进行训练以提取特征人耳子空间,再将测试图像投影到该子空间上,最后用最近邻欧式距离方法进行匹配。实验结果表明,以列向量作子模式时的识别率达98.333%,比行向量作子模式时提高了3.333%,与同样基于多元统计分析的PCA、2DPCA和PCA+FLD方法相比,识别效果最优,是一种有效的人耳识别方法。 To overcome the problem that the conventional algorithm based on Two-Dimensional Fisher Linear Discriminant (2DFLD) only took the row vectors of image matrix as sub-pattern, an ear recognition algorithm based on 2DFLD with taking the column vectors of image matrix as sub-pattern was proposed. Firstly, the ear feature subspace was extracted after processing training by using the column vectors of train image matrix as sub-pattern. Secondly, the test sample images were projected on small dimension subspace. Lastly, the nearest neighbor classifier to ear match based on Euclidean distance was used. The experimental results show that the recognition rate of column vectors reaches 98.333%, which is about 3.333% higher than that of row vectors. Compared with other methods such as PCA, 2DPCA and PCA+FLD based on the multi-element statistic analysis, the proposed method is the best one. It is an effective way of ear recognition.
出处 《光电工程》 CAS CSCD 北大核心 2009年第2期132-136,共5页 Opto-Electronic Engineering
基金 教育部"春晖计划"科研合作项目(Z2005-2-11009)
关键词 2DFLD 列向量 子模式 人耳识别 Two-dimensional FLD column vector sub-pattern ear recognition.
  • 相关文献

参考文献10

  • 1Burge M, Burger W. Ear Biometrics [M]. Boston: KluwerAcademic Publishers, 1999: 273-286.
  • 2Fukunaga K. Introduction to Statistical Pattern Recognition: 2nd ed [M]. New York: Academic Press, Inc, 1990: 94-102.
  • 3JIANG Wei, TAO Jun-wei, WANG Li-li. A Novel Palmprint Recognition Algorithm Based on PCA&FLD [C]// International Conference on Digital Teleeommunications, Cote d'Azur, Aug 29-31, 2006. Washington D C, USA: IEEE, 2006: 28-31.
  • 4Xiong Huilin, Swamy M N S. Ahmad M O. Two-dimensional FLD for Face Recognition [J]. Pattern Recognition (S0031-3203), 2005, 38(7): 1121-1124.
  • 5Yang J, Zhang D, Frangi A F, et al. Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recogntion [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2004, 26(1): 131-137.
  • 6Yu H, Yang J. A direct LDA algorithm for high dimensional data-with application to face recognition [J]. Pattern Recognition(S0031-3203), 2001, 34(10): 2067-2070.
  • 7李道红,陈松灿.线性判别分析新方法研究及其应用[D].南京:南京航空航天大学,2003:18-21.
  • 8钟子晶,陈绵书,石宇.基于矩阵行矢量鉴别矢量集的人脸识别[J].计算机工程与应用,2007,43(18):205-206. 被引量:2
  • 9Duda Richard O,Hart Peter E,Stork David G.模式分类[M].北京:中信出版社&机械工业出版社,2006:24-28.
  • 10黄修武,郭跃飞,杨静宇.基于代数方法的图像特征抽取和识别[J].南京理工大学学报,1998,22(1):1-5. 被引量:13

二级参考文献5

  • 1Turk M,Pentland A.Face recognition using eigenfaces[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,1991:586-591.
  • 2Belhumeur P N,Hespanha J P,Kriengman D J.Eigenfaces vs.fisherfaces:recognition using class specific linear projection[J].IEEE Trans Pattern Anal Mach Intell,1997,19(7):711-720.
  • 3Liu K,Cheng Y Q,Yang J Y.Algebraic feature extraction for image recognition based on an optimal discriminant criterion[J].Pattern Recognition,1993,26(6):903-911.
  • 4Yang J,Yang J Y.From image vector to matirx:a straightforward image projection technique-IMPCA vs.PCA[J].Pattern Recongition,2002,35:1997-1999.
  • 5程永清,庄永明,杨静宇.基于矩阵相似度的图象特征抽取和识别[J].计算机研究与发展,1992,29(11):42-48. 被引量:15

共引文献12

同被引文献45

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部