期刊文献+

一种有效的移动机器人里程计误差建模方法 被引量:9

An Efficient Approach to Odometric Error Modeling for Mobile Robots
下载PDF
导出
摘要 移动机器人里程计误差建模是研究移动机器人定位问题的基础.现有的移动机器人里程计误差建模方法多数针对某一种驱动类型移动机器人设计,运动过程中缺乏对里程计累计误差的实时反馈补偿,经过长距离运动过程定位精度大幅度降低.因此本文针对同步驱动和差动驱动轮式移动机器人平台提出了一种通用的里程计误差建模方法.在假设机器人运动路径近似弧线基础上,依据里程计误差传播规律推导了非系统误差、系统误差与里程计过程输入之间的近似函数关系,进而提出一种具有闭环误差实时反馈补偿功能的移动机器人定位算法,对定位过程中产生的里程计累计误差给予实时反馈补偿.实验表明新算法有效地减少了里程计累计误差,提高了定位精度. Odometric error modeling for mobile robot is a basis of localization. Most of the approaches to odometric error modeling are designed for some special driving-type robot up to now. And the unbounded odometric long term error, which degrades localization precision after long-distance movement, is not often able to be compensated in real-time. Therefore, a general approach to odometric error modeling for mobile robot is proposed with respect to both synchronous-drive roller robot and differential-drive roller robot. The method assumes that the robot path to be approximately to circular arcs. The approximate functions relationships between the process input of odometry and non-systematic errors as well as systematic errors are derived based on the odometric error propagation law. Further, a new localization algorithm for mobile robot is proposed, which is used to online compensate the accumulative errors of odometry in the process of localization. The experiments show that the new localization algorithm reduces the accumulative errors of odometry efficiently, and improves the localization precision remarkably.
出处 《自动化学报》 EI CSCD 北大核心 2009年第2期168-173,共6页 Acta Automatica Sinica
基金 国家高技术研究发展计划(863计划)(2006AA042259) 国家自然科学基金(60573108)资助~~
关键词 扩展卡尔曼滤波 里程计误差建模 移动机器人定位 位姿估计 Extended Kalman filter, odometric error modeling, mobile robot localization, pose estimation
  • 相关文献

参考文献11

  • 1Ioncl B, loan L, Franti E, Dascalu M, Moldovan C, Goschin S. Systematic odometry errors compensation for mobile robot positioning. In: Proceedings of the 7th International Conference on the Experience of Designing and Application of CAD Systems in Microelectronics. Washington D. C., USA: IEEE, 2003. 574-576.
  • 2Chung H, Ojeda L, Borenstein J. Accurate mobile robot dead-reckoning with a precision-calibrated fiber optic gyroscope. IEEE Transactions on Robotics and Automation, 2001, 17(1): 80-84.
  • 3Borenstein J, Feng L Q. Measurement and correction of systematic odometry errors in mobile robot. IEEE Transactions on Robotics and Automation, 1996, 12(6): 869-880.
  • 4Chong K S, Kleeman L. Feature-based mapping in real, large scale environments using an ultrasonic array. The International Journal of Robotics Research, 1999, 18(1): 3-19.
  • 5Kleeman L. Advanced sonar and odometry error modeling for simultaneous localisation and map building. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, USA: IEEE, 2003. 699-704.
  • 6Martinelli A. The odometry error of a mobile robot with a synchronous drive system. IEEE Transactions on Robotics and Automation, 2002, 18(3): 399-405.
  • 7Martinelli A. Modeling and estimating the odometry error of a mobile robot. In: Proceedings of the 5th IFAC Symposium on Nonlinear Control Systems. St. Petersburg, Russia: IFAC, 2001. 420-425.
  • 8Tur J M M, Gordillo J L, Borja C A. A closed-form expression for the uncertainty in odometry position estimate of an autonomous vehicle. IEEE Transactions on Robotics, 2005, 21(5): 1017-1022.
  • 9Julier S J, Uhlmann J K, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482.
  • 10Julier S J. The stability of covariance inflation methods for SLAM. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, USA: IEEE, 2003. 2749-2754.

同被引文献50

  • 1郝凯,孟正大.基于卡尔曼滤波的室内服务机器人定位[J].华中科技大学学报(自然科学版),2008,36(S1):193-195. 被引量:4
  • 2姚日剑,王先荣,王鹢.月球粉尘的研究现状[J].航天器环境工程,2008,25(6):512-515. 被引量:10
  • 3唐琎,白涛,蔡自兴.移动机器人的一种室内自然路标定位法[J].计算机工程与应用,2005,41(15):44-47. 被引量:9
  • 4胡振涛,刘先省.一种改进的一致性数据融合算法[J].传感器技术,2005,24(8):65-67. 被引量:16
  • 5罗真,曹其新.基于视觉和里程计信息融合的移动机器人自定位[J].机器人,2006,28(3):344-349. 被引量:4
  • 6Tang S B, Zhuang Y, Liu L, et al. Discrete trajectory tracking control of wheeled mobile robots[C]//Proceedings of the IEEE International Conference on Robotics and Biomimetics. Piscat- away, NJ, USA: IEEE, 2004: 344-349.
  • 7Fox D, Burgard W, Thrun S. Markov localization for mobile robots in dynamic environments[J]. Journal of Artificial Intelli- gence Research, 1999, 11(1): 391-727.
  • 8Agostino M. The odometry error of a mobile robot with a syn- chronous drive system[J]. IEEE Transactions on Robotics and Automation, 2002, 18(3): 399-405.
  • 9Lindsay K. Advanced sonar and odometry error modeling for simultaneous localization and map building[C]//Proceedings ofthe IEEE International Conference on Intelligent Robots andSystems. Piscataway, NJ, USA: IEEE, 2003: 699-704.
  • 10Adrian K, Toma L D. Correcting odometry errors for mobile robots using image processing[C]//Proceedings of the Interna- tional MultiConferences of Engineers and Computer Scientists. Piscataway, NJ, USA: IEEE, 2010.

引证文献9

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部