期刊文献+

关联规则中的Apriori挖掘算法改进 被引量:6

下载PDF
导出
摘要 关联规则挖掘是数据挖掘研究的一项重要内容。然而基于候选集的Apriori算法效率低下。针对此缺陷,提出了一种NApriori算法,该算法利用频繁1项集重新组织事务数据库来挖掘关联规则。此方法仅需扫描数据库2次,且避免了Apriori算法繁琐的连接和删除步骤,从而提高了挖掘效率。
作者 陈应霞 陈艳
出处 《长江大学学报(自科版)(上旬)》 CAS 2008年第4期341-343,共3页 JOURNAL OF YANGTZE UNIVERSITY (NATURAL SCIENCE EDITION) SCI & ENG
  • 相关文献

参考文献3

二级参考文献10

  • 1谈冉,康瑞华,李凌.物流信息系统的分布式数据库设计[J].武汉理工大学学报(信息与管理工程版),2006,28(8):38-41. 被引量:9
  • 2[1]Agrawal R,Sharfer J.Parallel Mining of Association Rules. IEEE Trans.on Knowledge and Dara Engg.,1996
  • 3[2]Agrawal R,Srikant R.Fast Algorithms for Mining Association Rules. In Proc.of the 20st VLDB Conference,Santiago, Chile, 1994:487-499
  • 4[3]Han E H,Karpis G,Kumar V.Scalable Parallel Data Mining for Association Rules. In Proc.of the ACM SIGMOD Conference on Management of Data, 1997
  • 5[4]Zaki M J.Parallel and Distributed Association Mining:A Survey. IEEE Concurrency(Special Issue on Data Mining),1999
  • 6[5]Zaiane O R, El-Hajj M,Lu P.Fast Parallel Association Rule Mining Without Candidate Generation.Technical Report TR01-12, Department of Computing Science, University of Alberta,Canada,2001
  • 7KARGUPTA H, PARK B, HERSHBERGER D, et al. Collective data mining:a new perspective toward distributed data mining [C]//Proc of Advanced in distributed data~mining. [ S. l. ] :AAAI/MIT, 2000: 133-184.
  • 8YAMANISHI K. Distributed cooperative Bayesian learning strategies [ C]//Proc of COLT. New York:ACM Press,1997:250-262.
  • 9CHEUNG D W,NG V T, FU A W,et al. Efficient mining of association rules in distributed databases [ J]. IEEE Trans on Knowledge and Dala Engineering, 1996,8 ( 6 ) :911 -922.
  • 10TAO Li, ZHU Sheng-huo, OGIHARA M. A new distributed data mining model based on similarity [ C]//Proc of ACM Symposium on Applied Computing. New York :ACM Press ,2003:432-436.

共引文献12

同被引文献32

  • 1杨启昉,马广平.关联规则挖掘Apriori算法的改进[J].计算机应用,2008,28(S2):217-218. 被引量:13
  • 2马盈仓.挖掘关联规则中Apriori算法的改进[J].计算机应用与软件,2004,21(11):82-84. 被引量:24
  • 3徐章艳,刘美玲,张师超,卢景丽,区玉明.Apriori算法的三种优化方法[J].计算机工程与应用,2004,40(36):190-192. 被引量:71
  • 4曾万聃,周绪波,戴勃,常桂然,李春平.关联规则挖掘的矩阵算法[J].计算机工程,2006,32(2):45-47. 被引量:33
  • 5孙振龙,宋广军,李晓晔,黄迎春.基于数据挖掘技术的Snort入侵检测系统的研究[J].微计算机信息,2006,22(11X):212-214. 被引量:9
  • 6AGRWAL R, SRIKAN R. Fast algorithms for mining association rules in large databases [ C]//Proceedings of the 20th International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 1994:487 - 499.
  • 7PARK J S, CHEN M S, YU P S. An effective Hash based algorithm for mining association rules [ C]//Proceedings of International Conference on the Special Interest Group on Management of Data. New York: ACM, 1995:175 - 186.
  • 8HAN J, FU Y. Discovery of multiple-level association rules from large databases [ C]//Proceedings of the 20th International Conference on Very Large Database. Zuich, Switzerland: [ s. n. ], 1995: 420 - 431.
  • 9SAVASERE A, OMIECINSKI E, NAVATHE S. An efficient algorithm for mining association rules in large databases [ C]// Proceedings of the 21st International Conference on Very Large Database. New York: ACM, 1995:432-443.
  • 10TOLVONEN H . Sampling large databases for association rules [C]// Proceedings of the 22nd International Conference on Very Large Database. Bombay, India [ s. n. ], 1996:134 - 145.

引证文献6

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部