期刊文献+

两亲分子对碳纳米管的分散稳定作用 被引量:13

Dispersion of Carbon Nanotubes by Amphiphilic Molecules
下载PDF
导出
摘要 综述了近年来国内外对碳纳米管在两亲分子水溶液中的分散作用研究,从表面活性剂、聚合物和生物大分子三方面,分别阐述了用非成键法对碳纳米管进行分散的不同机理.离子型表面活性剂或聚电解质主要靠亲水基团之间的静电斥力阻止碳纳米管之间的聚集,而非离子型表面活性剂或大分子则主要靠亲水基团所产生的空间位阻使分散体系保持稳定. Recently, plenty of attention has been paid to the dispersion of carbon nanotubes by amphiphilic molecules. In this paper, different mechanisms for a non-covalent dispersion of carbon nanotubes are summarized from the three fields of surfactants, polymers, and biomacromolecules. Ionic surfactants or polyelectrolytes mainly depend on an electrostatic repulsion between hydrophilic groups to prevent carbon nanotube aggregation while non- ionic surfactants or polymers mainly rely on a steric stabilization of hydrophilic groups to disperse the carbon nanotubes.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2009年第2期382-388,共7页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(20573067 20873077)资助项目
关键词 碳纳米管 分散性 表面活性剂 聚合物 生物大分子 Carbon nanotube Dispersion Surfactant Polymer Biomacromolecule
  • 相关文献

参考文献97

  • 1王垚,吴珺,魏飞,金涌.破碎-絮凝法分离细长碳纳米管与碳纤维[J].物理化学学报,2003,19(4):376-379. 被引量:4
  • 2Iijima, S. Nature, 1991, 354:56
  • 3Iijima, S.; Ichihashi, T. Nature, 1993, 363:603
  • 4Vaisman, L.; Wagner, H. D.; Marom, G. Adv. Colloid lnterf. Sci., 2006, 128:37
  • 5Yang, Y. L.; Zhang, J.; Nan, X. L.; Liu, Z. F. J. Phys. Chem. B, 2002, 106:4139
  • 6Liu, C.; Fan, Y. Y.; Liu, M.; Cong, H. T.; Cheng, H. M.; Dresselhaus, M. S. Science, 1999, 286:1127
  • 7Sugie, H.; Tanemura, M.; Filip, V.; Iwata, K.; Takahashi, K.; Okuyama, F. Appl. Phys. Lett., 2001, 78:2578
  • 8Zou, H. L.; Yang, Y. L.; Li, Q, W.; Zhang, J.; Liu, Z. F.; Guo, X. Y.; Du, Z. L. Carbon, 2002, 40:2282
  • 9Kong, J.; Frank/in, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K. Science, 2000, 287:622
  • 10Dai, H. J.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E. Nature, 1996, 384:147

二级参考文献57

  • 1吴小利,岳涛,陆荣荣,朱德彰,朱志远.碳纳米管/氧化锌纳米复合材料的制备及其形貌控制[J].无机化学学报,2005,21(10):1605-1608. 被引量:5
  • 2[1]Drexler K E. Nanosystems: Molecular machinery manufacturing and computation. New York: Wiley-Interscience Publication, 1992. 253~319
  • 3[2]Kim P, Lieber C M. Nanotube nanotweezers. Science, 1999, 286: 2148~2150
  • 4[3]Falvo M R, Clary G J, Taylor II R M, et al. Bending and buckling of carbon nanotubes under large strain. Nature, 1997, 389: 582~584
  • 5[4]Postma H W C, Sellmeijer A, Dekker C. Manipulation and imaging of individual single-walled carbon nanotubes with an atomic force microscope. Adv Mater, 2000, 12(17): 1299~1302
  • 6[5]Postma H W C, Jonge M D, Yao Z, et al. Electrical transport through carbon nanotube junctions created by mechanical manipulation. Physical Review B, 2000, 62(16): 10653~10656
  • 7[6]Hertel T, Martel R, Avouris P. Manipulation of individual carbon nanotubes and their interaction with surfaces. J Phys Chem B, 1998, 102: 910~915
  • 8[7]Yu M F, Dyer M J, Skidmore G D, et al. Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope. Nanotechnology, 1999, 10: 244~252
  • 9[8]Guthold M, Falvo M R, Matthews W G, et al. Investigation and modification of molecular structures with the nanomanipulator. Journal of Molecular Graphics and Modelling, 1999, 17: 187~197
  • 10[9]Falvo M R, Taylor Ⅱ R M, Helser A, et al. Nanometre-scale rolling and sliding of carbon nanotubes. Nature 1999, 397: 236~238

共引文献19

同被引文献134

引证文献13

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部