摘要
为了解决类对象测试数据的自动化生成问题,研究了基于UML(Unified Modeling Language,统一建模语言)状态图和遗传算法的类对象测试数据自动生成技术。在扩展海明距离法的基础上进行适应度缩放,提出了一种在遗传算法中生成类对象测试数据的适应度函数改进方法,提高了遗传算法的收敛速度。最后将方法实验于实际系统,实验结果显示在生成类对象测试数据的效率上有明显的提高。
In order to solve the problem of automatic generation of class-object .test data, automatic generation of class-object test data on state diagram of UML and Genetic Algorithm (GA) was investigated. On the basis of Extended Hamming Distance (EHD), a modified method was proposed for fitness function of generating class-object test data by using GA, and the convergence rapid of GA was raised. At last, the method was applied to real system. The testing results show that the method significantly improves the efficiency of generating class-object test data.
出处
《微计算机信息》
2009年第6期213-214,227,共3页
Control & Automation
基金
基金申请人:崔冬华
无线传感器网络中智能数据融合方法的研究
基金颁发部门:山西省回国留学人员科研资助项目(2007-27)
关键词
遗传算法
类对象测试数据
测试数据生成
适应度函数
Genetic Algorithm (GA)
class-object test data
test data generation
fitness function