期刊文献+

基于霍夫直线检测的稀疏盲分离

Sparse blinding separation based on the linear detection and Hof transformation
下载PDF
导出
摘要 提出了基于霍夫变换直线检测的稀疏盲分离算法,直接利用信号数据,提取其在空间分布的直线方向,消除了初始化的随机性,降低了对信号稀疏度的要求,精确地估计出了混合矩阵,从而达到分离出源信号的目的。给出仿真结果,验证了算法的有效性。 This paper proposes one method of linear detection based on the Hof transformation which extracts the linear direction of spatial distribution using signal data. The new method can separate source signal for it estimates mixed matrix accurately and degrades requirement of sparse degree. Simulation demonstrates the method is effective.
出处 《微计算机信息》 2009年第6期274-275,145,共3页 Control & Automation
基金 申请人:杨俊安 项目名称:同频信号的盲分离技术研究 基金颁发部门:安徽省自然科学基金委(050420101)
关键词 稀疏盲分离 欠定 稀疏分量分析 稀疏源 霍夫变换 Sparse blinding separation undetermined Sparse component analysis Sparse source Hof-transformation
  • 相关文献

参考文献6

  • 1P.Georgiev, P. Pardalos, F..1. Theis, A. Cichocki, and H Bakardjian; Sparse component analysis: a new tool for data mining In Data Mining in Biomedicine, Springer, New York, NY, USA 2005.
  • 2Y. Q. Li, A. Cichocki, S. Amari. Analysis of sparse representation and blind source separation. Neural computation, vol.16, 1193-1234, 2004.
  • 3丁铎,贾永强,王映民.任意概率密度信号的盲分离[J].微计算机信息,2005,21(10X):165-166. 被引量:2
  • 4D. O'Grady, A Pearlmutter. Soft-LOST: EM on a Mixture of Oriented Lines. 2005.
  • 5Yuanqing Li, A. Cichocki, S. Amari. Underdetermined Blind Source Separation based on Sparse Represention. IEEE Transactions on Signal Processing, 2006, Vol.54 423-437.
  • 6Zhaoshui He and Andrzej Cichocki. K-EVD Clustering and Its Applications to Sparse Component Analysis. J.Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 90-97, 2006.

二级参考文献3

  • 1Pierre Comon,“Independent component analysis, A new concept?”IEEE.Trans. Signal Processing, Vol.36, No.3, Special issue on High-Order Statistics, April 1994, PP.287-314.
  • 2Jean-Francois Cardoso,Member,IEEE “Blind Signal Separation:Statisical Principles,” Proceedings of the IEEE,Vol.86, No. 10, October 1998.
  • 3F.Harry and J.-L. Lacoume, “Maximum likelihood estimators and Cramer-Rao bounds in source separation, ”Signal Process, vol.55, pp.167-177, Dec.1996.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部