期刊文献+

基于二项logistic回归模型与CART树的煤层底板突水预测 被引量:14

Prediction of water inrush through coal floor based on binary logistic regression model and CART
下载PDF
导出
摘要 为定量评价煤层底板突水信息对突水过程的影响程度,获得煤层底板突水规则,采用二项logistic回归与CART树相结合的方法进行煤层底板突水预测。在煤层底板突水信息分析的基础上,建立了包含全因素的煤层底板突水预测概率模型,基于向后逐步回归分析方法获得了包含6项主要突水信息的精简煤层底板突水预测概率模型。通过CART树算法获得了煤层底板突水规则,分类测试结果表明,所获得的突水规则分类准确率达到91.67%。 To quantitatively evaluate the information of water inrush through coal floor, and get rules of water inrush, binary logistic regression and classification and regression tree were used to predict water inrush through coal floor. Based on the analysis of water inrush information, a probabilistic predicting model which contained all selected factors was established, a simplified model which contained six main factors was established based on backward stepwise regression method. Rules of coal floor water bursting were found by classification and regression tree method, the result of classification test showed that the classification accuracy of water inrush achieves up to 91.67%.
出处 《煤田地质与勘探》 CAS CSCD 北大核心 2009年第1期56-61,共6页 Coal Geology & Exploration
基金 国家重点基础研究发展计划(973计划)项目(2006CB202205) "十一五"国家科技支撑计划重点项目(2007BAK24B04 2007BAK24B01) 煤炭科学研究总院青年创新基金项目(2007QN45)
关键词 二项logisitic回归 突水预测 突水信息 CART树 binary logistic regression water inrush prediction water inrush information classification and regression tree
  • 相关文献

参考文献10

二级参考文献10

共引文献325

同被引文献117

引证文献14

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部