期刊文献+

极大极小问题的光滑信赖域拟牛顿法

Smoothing Trust-Region Quasi-Newton Algorithm for Minimax Problem
下载PDF
导出
摘要 利用函数逼近论的思想和数学规划最优解的稳定性理论,提出了一种求解非线性约束的极大极小问题的信赖域拟牛顿算法,并且该算法具有全局收敛性,初步的数值试验表明,对于该类极大极小问题,该算法具有良好的数值表现。 Based on the theory of function approximation and the stability theory of optimal solutions in mathematical programming, a trust-region quasi-Newton method for solving the minimax problem with nonlinear constraints is proposed. The algorithm which resolves general minimax problems is global convergent. Preliminary numerical experiments show that the proposed algorithm is effective.
作者 刘平 韦春妙
出处 《桂林电子科技大学学报》 2009年第1期69-72,共4页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(10501009) 广西自然科学基金(桂科自0728206)
关键词 Minimax优化问题 信赖域拟牛顿法 非线性约束 全局收敛 minimax optimization problem trust-region quasi-Newton analysis nonlinear constraint global convergence
  • 相关文献

参考文献9

  • 1FENG Ye. A smoothing trust-region Newton-CG method for minimax problem[J]. Applied Mathematics and Computation, 2008,199: 581-589.
  • 2ZANG I. A smoothing technique for rain-max optimization[J]. Mathematical Programming, 1980, 19: 61-77.
  • 3文新辉.一类求解无约束min-max问题的新算法[J].西安电子科技大学学报,1989,16(2):166-174. 被引量:2
  • 4陈小红,马昌凤.非线性互补问题光滑牛顿法的全局收敛性[J].桂林电子科技大学学报,2006,26(5):402-405. 被引量:9
  • 5POLAK E, ROYSET J O, WOMERSLEY R. S. Algorithms with adaptive smoothing for minimax problems[J]. Journal of Optimization Theory and Applications, 2003,119(3):459-484.
  • 6PAN Shao-hua. An efficient algorithm for the smallest enclosing ball problem in high dimensions[J]. Applied Mathematics and Computation, 2006,172 : 49-61.
  • 7BANDLER J W, Charalambous C. Theory of generalized least pth approximation [J]. IEEE. Trans. Circuit Theory, 1972, CT-19(3).
  • 8MADSEN K. Automated minimax design of networks [J]. IEEE. Trans. Circuits and Systems, 1975, CAS-22(10).
  • 9张聪,朱志斌.线性互补约束优化序列线性方程组算法的一个降维技术[J].桂林电子科技大学学报,2008,28(4):327-329. 被引量:2

二级参考文献14

  • 1ZHANG LIPING,GAO ZIYOU.Superlinear/quadratic one-stepsmoothing Newton method for P_0-NCP without strict complementarity[J].Mathematical Methods of Operation Research,2002,56:231-241.
  • 2HARKER P,PANG J S.Finite-dimensional variationalin-equality and nonlinear complementarity problems:a survey of theory,algorithms and applications[J].Mathematical Programming,1990,48:161-220.
  • 3FERRIS M C,PANG J S.Engineering and economic applications of complementarity problems[J].SIAM Review,1997,39:669-713.
  • 4FISCHER A.A special Newton-type optimization method[J].Optimization,1992,24:269-284.
  • 5CHEN B,HARKER P T.Smoothing approximations to nonlinear complementarity problems[J].SIAM Journal on Optimization,1997,7(1):403-420.
  • 6QI H.A regularized smoothing Newton method for box constrained variational inequality problems with P0-functions[J].SIAM Journal on Optimization,2000,10(1):315-330.
  • 7QI L,SUN D,ZHOU G.A new look at smoothing Newton methods for nonlinear complementarity problems and box constrainedvariational inequality problems[J].Mathematical Programming,2000,87(1):1-35.
  • 8CHEN X J, Fukushima M. A smoothing method for a mathematical programm with P-matrix linear complementarity constraints[J]. Computational Optimization and Application,2004, 27:223-246.
  • 9ZHU Z B, ZHANG K C. A superlinearly convergent SQP algorithm for mathematical programm with linear complementarity Constraints[J]. Application and Computation, 2006,172:222- 244.
  • 10FUKUSHIMA M,LUO Z Q,PANG J S. A golbally convergent Sequential quadratic programming algorithm for mathematical programs with linear complementarity Constraints[J]. Computational Optimization and Application, 1998,10 : 5-34.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部