期刊文献+

三自由度双侧刚性约束振动系统的概周期运动 被引量:4

QUASI-PERIODIC MOTIONS OF A THREE-DEGREE-OF-FREEDOM VIBRATING SYSTEM WITH TWO RIGID CONSTRAINS
原文传递
导出
摘要 通过模态矩阵法解耦,建立了一类具有双侧刚性约束的三自由度冲击振动系统的对称型周期运动及Poincaré映射,研究了系统映射在其Jacobian矩阵的一对复共轭特征值穿越复平面单位圆周情况下的概周期运动,并通过数值仿真揭示了系统在弱共振条件和三种强共振条件下的概周期运动及其经锁相或环面倍化通向混沌的转迁途径,给出了系统从概周期运动变成混沌运动激振频率的变化范围。 With the help of an uncoupled approach of modal matrices, the symmetrical periodic motion and Poincare mapping of a three-degree-of-freedom vibrating system with two rigid constrains are derived analytically. Quasi-periodic motions of the system are investigated by concerning one complex conjugate pair of eigenvalues passing through a unit circle in Jacobian matrix. In non-resonance case and three strong resonance cases, quasi-periodic motions of symmetrical periodic motions and their routes to chaos via lock phase or torus doubling are also illustrated by numerical simulation. And the excited-frequency range from quasi-periodic motions to chaotic motions of the system is obtained.
作者 张艳龙 王丽
出处 《工程力学》 EI CSCD 北大核心 2009年第2期71-77,共7页 Engineering Mechanics
基金 国家自然科学基金项目(10572055 50475109) 甘肃省自然科学基金项目(3ZS062-B25-007 3ZS042-B25-044)
关键词 冲击振动 映射 周期运动 共振 混沌 vibro-impact mapping periodic motion resonance chaos
  • 相关文献

参考文献10

二级参考文献22

  • 1胡海岩.分段线性系统动力学的非光滑分析[J].力学学报,1996,28(4):483-488. 被引量:33
  • 2谢建华.一类碰撞振动系统的余维二分叉和Hopf分叉[J].应用数学和力学,1996,17(1):63-73. 被引量:39
  • 3[1]Guckenheimer J,Holmes P.Nonlinear Oscillations,Dynamical Systems,and Bifurcations of Vector Fields[M].New York:Springer-Verlag,1986.
  • 4[2]Wigins S.Introduction to Applied Nonlinear Dynamical Systems and Chaos[M].(Reprinted).New York:Springer-Verlag,1991.
  • 5[3]Wiggins S.Global Bifurcations and Chaos,Analytical Methods[M].New York:Springer-Verlag,1988.
  • 6[4]Bazejczyk-Okolewska B,Kapitaniak T.Co-existing attractors of impact oscillator[J].Chaos,Solitons & Fractals,1998,9(8):1439-1443.
  • 7[5]Feudel U,Grebogi C,Poon L,Yorke J A.Dynamical properties of a simple mechanical system with a large number of coexisting periodic attractors[J].Chaos,Solitons & Fractals,1998,9(1/2):171-180.
  • 8[6]Whiston G S.Global dynamics of a vibro-impacting linear oscillator[J].J Sound Vib,1987,118(3):395-424.
  • 9[7]Shaw S W,Holmes P J.A periodically forced piecewise linear oscillator[J].J Sound Vib,1983,90(1):129-155.
  • 10[8]Ivanov A P.Stabilization of an impact oscillator near grazing incidence owing to resonance[J].J Sound Vib,1993,162(3):562-565.

共引文献37

同被引文献19

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部