期刊文献+

基于UKF的交互多模型算法 被引量:17

Interacting Multiple Model Algorithm Based on UKF
原文传递
导出
摘要 为了提高交互多模型算法的滤波精度,提出了基于无迹卡尔曼滤波(UKF)的交互多模型算法(IMM-UKF)。该算法融合了交互多模型算法对不同目标机动模式的自适应能力和UKF滤波精度高的优点。通过对机动目标跟踪的应用仿真,将该算法和基于扩展卡尔曼滤波(EKF)的交互多模型算法(IMM-EKF)进行了比较,仿真结果表明了IMM-UKF具有较好的跟踪性能,减小了机动目标跟踪的均方根误差。 An interacting multiple model algorithm based on the unscented Kalman (UKF) was proposed to improve the accuracy of interacting multiple model. The adaptive ability to various target maneuvering patterns was combined with the advantage of higher accuracy provided by UKE IMM-UKF was compared with interacting multiple model algorithm based on the extended Kalman (IMM-EKF) in maneuvering target tracking. Simulation results show that IMM-UKF is superior and its root mean square error (RMSE) is reduced.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第3期655-657,共3页 Journal of System Simulation
基金 国家自然科学基金资助项目(60501004) 航天科技创新基金资助项目(N7CH0003)
关键词 扩展卡尔曼滤波 无迹卡尔曼滤波 机动目标跟踪 交互多模型 extended kalman filter unscented kalman filter maneuvering target tracking interacting multiple model
  • 相关文献

参考文献10

  • 1X RONG LI, VESSELIN P JILKOV. Survey of Maneuvering Target Tracking Part 1: Dynamic Models [J]. IEEE Transactions on aerospace and electronic systems: (S0018-9251), 2003, 39(4): 1333-1364.
  • 2Zhen Ding, Henry Leung, Keith Chan, Zhiwen Zhu. Model-Set Adaptation Using a Fuzzy Kalman Filter [J]. Mathematical and Computer Modeling: (S0895-7177), 2001, 34(7-8): 799-812.
  • 3B J Lee, J B Park, H J Lee, Y H Joo. Fuzzy-logic-based IMM algorithm for tracking a manoeuvring target [C]//IEE Proc. Radar Sonar and Navigation. USA: IEE, 2005, 152: 16-22.
  • 4申斌,董朝阳,陈宇,王青.一种模糊自适应交互多模型算法[J].系统仿真学报,2005,17(10):2345-2348. 被引量:12
  • 5Michanil N Petsios. Maneuvering target tracking using multiple bistatic range and range-rate measurements [J]. Signal Processing (S0165-1684), 2007, 87(7): 665-686.
  • 6A FARINA, B RISTIC, D BENVENUTI. Tracking a Ballistic Target: Comparison of Several Nonlinear Filters [J]. IEEE Transactions on aerospace and electronic systems (S0018-9251), 2002, 38(3): 854-867.
  • 7Ning zhou Cui, Lang Hong, Jeffery R Layne. A comparison of nonlinear filtering approaches with an application to ground target tracking [J]. Signal Processing (S0165-1684), 2005, 85(8): 1469-1492.
  • 8S Julier, J Uhlmann, H F Durrant-Whyte. A new method for the nonlinear transformation of means and covariance in filters and estimators [J]. IEEE Transactions on automatic Control (S0018-9286), 2000, 45(3): 477-482.
  • 9潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 10Simon J Juliet The Scaled Unscented Transformation [C]// Proceedings of American Control Conference. Anchorage, AK, USA, 2002, 6: 4555-4559.

二级参考文献81

  • 1Arulampalam S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188.
  • 2Thrun S,Fox D,Burgard W,et al.Robust monte carlo localization for mobile robots[J].Artificial Intelligence,2001,128(1-2):99-141.
  • 3Julier S J,Uhlmann J K,Durrant-Whyten H F.A new approach for filtering nolinear system[A].Proc of the American Control Conf[C].Washington:Seattle,1995:1628-1632.
  • 4Julier S J,Uhlmann J K.A general method for approximating nonlinear transformations of probability distributions[EB/OL].http://www.robots.ox.ac.uk/~siju/work/publications/Unscented.zip,1997-09-27.
  • 5Julier S J,Uhlmann J K.A consistent,debiased method for converting between polar and Cartesian coordinate systems[A].The Proc of AeroSense:The 11th Int Symposium on Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:110 -121.
  • 6Julier S J,Uhlmann J K.A new extension of the Kalman filter to nonlinear systems[A].The Proc of AeroSense:11th Int Symposium Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:54-65.
  • 7Julier S J.A skewed approach to filtering[A].The Proc of AeroSense:12th Int Symposium Aerospace/Defense Sensing Simulation Control[C].Orlando,1998:271-282.
  • 8Julier S J.The spherical simplex unscented transformation[A].American Control Conf[C].Denver,2003:2430-2434.
  • 9Julier S J,Uhlmann J K,Durrant-Whyte H F.A new approach for the nonlinear transformation of means and covariances in filters and estimators[J].IEEE Trans on Automatic Control,2000,45(3):477-482.
  • 10Lefebvre T,Bruyninckx H,De Schutter J.Comment on"a new method for the nonlinear transformation of means and covariances in filters and estimators"[J].IEEE Trans on Automatic Control,2002,47(8):1406-1408.

共引文献241

同被引文献142

引证文献17

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部