期刊文献+

基于XFEM的混凝土开裂数值模拟研究 被引量:15

Study on Numerical Simulation of Crack Growth of Concrete Based on XFEM
下载PDF
导出
摘要 扩展有限元法(XFEM)是近年来发展起来的分析不连续问题(特别是断裂问题)的一种有效方法。介绍了扩展有限元法的基本原理,给出了采用扩展有限元法进行混凝土开裂、裂纹扩展分析的方法,最后采用扩展有限元法模拟了含初始裂纹的混凝土试件和重力坝的开裂扩展过程,分析了其位移、应力场分布规律。算例表明扩展有限元法在进行断裂分析时克服了常规有限元法的缺点,避免了常规有限元法在分析断裂问题时繁琐的前处理过程,不需要裂纹面与有限元网格一致,不需要在裂缝周围布置高密度网格,模拟裂纹扩展过程时不需要不断地重新划分网格,展示了扩展有限元法在裂纹扩展分析中的独特优势。 Extended finite element method(XFEM) is a new and effective method for analyzing discontinuity problem arisen in recent few years, specially the problem of fracture. The basic theory of XFEM is introduced and the method of analyzing concrete fracture and crack growth is presented. Finally, the fracturing process of two samples including initial cracks and the crack growth process of the concrete gravity dam are simulated by XFEM. The discipline of displacement and stress field distribution of the samples are analyzed. Comparing with classical finite element method, the crack growth of concrete can be simulated by XFEM without making the crack surface associated to the mesh, without setting dense mesh near the crack tip and without re-meshing after crack growth. Thus the cumbersome works and disadvantages in fracturing analysis are avoided by the application of XFEM. The unique advantage of XFEM in concrete fracturing analysis is displayed.
出处 《重庆交通大学学报(自然科学版)》 CAS 北大核心 2009年第1期36-40,155,共6页 Journal of Chongqing Jiaotong University(Natural Science)
基金 国家自然科学基金委员会 二滩水电开发有限责任公司雅砻江水电开发联合研究基金项目(50539030) 水利水运工程教育部重点实验室年度开放基金项目(SLK2008B04)
关键词 扩展有限元 混凝土 裂纹扩展 数值模拟 XFEM ( Extended Finite Element Method) concrete crack growth numerical simulation
  • 相关文献

参考文献1

二级参考文献16

  • 1Ortiz M,Leroy Y,Needleman A. A finite element method for localized failure analysis[J]. Computer Methods in Applied Mechanics and Engineering,1987,61:189-214.
  • 2Belytschko T,Fish J,Engelmann B E. A finite element with embedded localization zones[J]. Computer Methods in Applied Mechanics and Engineering,1988,70:59-89.
  • 3Dvorkin E N,Cuitino A M,Gioia G. Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions[J]. Computer Methods in Applied Mechanics and Engineering,1990,90:829-844.
  • 4Lotfi H R,Shing P B. Embedded representations of fracture in concrete with mixed finite elements[J]. International Journal for Numerical Methods in Engineering,1995,38:1 307-1 325.
  • 5Simo J C,Oliver J,Armero F. An analysis of strong discontinuities induced by strain softening in rate-independent inelastic of solids[J]. Computational Mechanics,1993,12:277-296.
  • 6Bolzon G,Corigliano A. Finite element with embedded displacement discontinuity:a generalized variable formulation[J]. International Journal for Numerical Methods in Engineering,2000,49(10): 1 227-1 266.
  • 7Camacho G T,Ortiz M. Computational modeling of impact damage in brittle materials[J]. International Journal of Solids and Structures. 1996,33:2 899-2 938.
  • 8Jirasek M. Comparative study on finite elements with embedded discontinuities[J]. Computer Methods in Applied Mechanics and Engineering,2000,188:307-330.
  • 9Nicolas M,John D,Belytschko T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering,1999,46(1):131-150.
  • 10Wells G N,Sluys L J. A new method of modeling cohesive cracks using finite elements[J]. International Journal for Numerical Methods in Engineering,2001,50:2 667-2 682.

共引文献26

同被引文献151

引证文献15

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部