期刊文献+

基于S函数调节的非线性自适应动态面控制 被引量:3

Nonlinear Adaptive Dynamic Surface Control Based on S-function Regulation
下载PDF
导出
摘要 针对一类控制增益未知的多输入多输出(MIMO)非线性系统,提出了一种基于神经网络的鲁棒自适应动态面控制方法.利用动态面控制解决反推法的计算膨胀问题;同时在参数自适应律中引入S(Sigmoid)函数,动态调节神经网络的收敛速度,解决了自适应初始阶段的抖振现象.利用李亚普诺夫稳定性定理,证明了闭环系统所有信号最终有界,系统的跟踪误差最终收敛到有界紧集内.仿真结果表明了该方法的有效性. A robust and adaptive dynamic surface control approach based on neural networks is presented for a general class of MIMO (multi-input multi-output) nonlinear systems with unknown control gain. Dynamic surface control (DSC) is used to eliminate the shortcoming of calculation explosion in traditional backstepping method. At the same time, the S- function is introduced into the adaptive mechanism so that the adaptive laws can regulate the convergence speed of neural networks, which resolve the chattering phenomenon in the initial period of adaptive control. It is shown with Lyapunov stability theory that all signals in the closed loop system are ultimately bounded and the output tracking error converges to an arbitrary small compact set. Simulation results demonstrate the effectiveness of the proposed approach.
出处 《信息与控制》 CSCD 北大核心 2008年第6期675-680,共6页 Information and Control
基金 国家自然科学基金资助项目(90405011)
关键词 自适应控制 反推法 动态面控制 RBF神经网络 adaptive control backstepping dynamic surface control radial basis function neural network (RBFNN)
  • 相关文献

参考文献11

  • 1Ge S S, Wang C. Direct adaptive NN control of a class of nonlinear systems [J]. IEEE Transactions on Neural Networks, 2002, 13(1): 214-221.
  • 2Li Y H, Qiang S, Zhuang X Y, et al. Robust and adaptive backstepping control for nonlinear systems using RBF neural networks [J]. IEEE Transactions on Neural Networks, 2004, 15(3): 693-701.
  • 3Ge S S, Wang C. Adaptive neural control of uncertain MIMO nonlinear systems [J]. IEEE Transactions on Neural Networks,2004, 15(3): 674-692.
  • 4Du H B, Shao H H, Yao P J. Adaptive neural network control for a class of low-triangular-structured nonlinear systems [J]. IEEE Transactions on Neural Networks, 2006, 17(2): 509-514.
  • 5Krstic M, Kanellakopoulos I, Kokotoiv P V. Nonlinear and Adaptive Control DeSign [M]. New York, NY, USA: John Wiley & Sons, 1995.
  • 6Swaroop D, Hedrick J K, Yip P P, et al. Dynamic surface control for a class of nonlinear systems [J]. IEEE Transactions on Automatic Control, 2000, 45(10): 1893-1899.
  • 7Wai R J, Lee J D. Development of levitation control for linear maglev rail system via backstepping design technique [A]. Proceedings of the 2006 IEEE Conference on Robotics, Automation and Mechatronics [C]. Piscataway, NJ, USA: IEEE, 2006. 1-6.
  • 8李文磊,刘士荣,蒋刚毅.不确定Liu混沌系统的动态面跟踪控制[J].系统工程与电子技术,2006,28(12):1874-1877. 被引量:3
  • 9刘同栓,关新平,许皓.基于动态面控制的超混沌自适应同步[J].信息与控制,2006,35(1):43-46. 被引量:3
  • 10Wang D, Huang J. Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strictfeedback form [J]. IEEE Transactions on Neural Networks, 2005, 16(1): 195-202.

二级参考文献32

共引文献10

同被引文献36

  • 1谭文,王耀南.Synchronization of an uncertain chaotic system via recurrent neural networks[J].Chinese Physics B,2005,14(1):72-76. 被引量:2
  • 2刘超彬,乔俊飞.污水处理过程中对泥龄的模糊神经网络控制[J].信息与控制,2006,35(1):16-20. 被引量:6
  • 3席剑辉,韩敏.多重分支时间延迟神经网络的混沌预测研究[J].信息与控制,2007,36(2):181-186. 被引量:6
  • 4张平,苑明哲,王宏.基于国际评价基准的溶解氧控制方法研究[J].信息与控制,2007,36(2):199-203. 被引量:13
  • 5Gracia M D, Grau P, Huete E, et al. New generic mathematical model for WWTP sludge digesters operating under aerobic and anaerobic conditions: Model building and experimental verifi- cation[J]. Water Research, 2009, 43(18): 4626-4642.
  • 6Civelekoglu G, Yigit N O, Diamadopoulos E, et al. Modelling of COD removal in a biological wastewater treatment plant us- ing adaptive neuro-fuzzy inference system and artificial neural network[J]. Water Science & Technology, 2009, 60(6): 1475- 1487.
  • 7Du H B, Shao H H, Yao P J. Adaptive neural network control for a class of low-triangular-structured nonlinear systems[J]. IEEE Transactions on Neural Networks, 2006, 17(2): 509-514.
  • 8Faur C, Cougnaud A, Dreyfus G, et al. Modelling the break- through of activated carbon filters by pesticides in surface wa- ters with static and recurrent neural networks[J]. Chemical En- gineering Journal, 2008, 145(1): 7-15.
  • 9Thiery F, Grieu S, Traore A. Integration of neural networks in a geographical information system for the monitoring of a catch- ment area[J]. Mathematics and Computers in Simulation, 2008, 76(5): 388-397.
  • 10Yuzgec U. Dynamic neural-network-based model-predictive control of an industrial baker's yeast drying process[J]. IEEE Transactions on Neural Networks, 2008, 19(7): 1231-1242.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部