期刊文献+

群体环境下基于随机对策的多Agent局部学习算法

Local Learning Algorithm for Multi-agent Based on Stochastic Games under Group Environment
下载PDF
导出
摘要 基于群体环境中个体agent局部感知和交互的生物原型,提出一种随机对策框架下的多agent局部学习算法.算法在与局部环境交互中采用贪婪策略最大化自身利益.分别在零和、一般和的单个平衡点和多个平衡点情形下改进了Nash-Q学习算法;提出了行为修正方法,并证明了算法收敛、计算复杂度降低. A local learning algorithm for multi-agent-based stochastic games is proposed in light of the fact that the individual performs local perception and interaction in group. In the algorithm, every agent adopts greedy policy to maximize- its payoff when interacting with the environment. The Nash-Q earning algorithm is improved respectively in situations of zero-sum, general-sum games with only one equilibrium or multi-equilibrium. Besides, the method to modify the behavior is proposed, and it is proved that the algorithm is convergent and the computing complexity is reduced.
出处 《信息与控制》 CSCD 北大核心 2008年第6期703-708,共6页 Information and Control
基金 国家自然科学基金资助项目(60503024 60374032)
关键词 多AGENT学习 随机对策 Nash—Q 局部学习 multi-agent learning stochastic game Nash-Q local Jearning
  • 相关文献

参考文献10

  • 1Wang B N, Gao Y, Chen Z Q, et al. A two-layered multi-agent reinforcement learning model and algorithm [J]. Journal of Network and Computer Applications, 2007, 30(4): 1366- 1376.
  • 2Littman M L. Markov games as a framework for multi-agent reinforcement learning [A]. Proceedings of the 11th International Conference on Machine Learning [C]. San Mateo, CA, USA: Morgan Kaufmann, 1994. 157-163.
  • 3Hu J, Wellman M E Experimental results on Q-learning for general-sam stochastic games [A]. Proceedings' of the Seventeenth International Conference on Machine Learning [C]. San Mateo, CA, USA: Morgan Kaufmarm, 2000. 407-414.
  • 4Ishii S, Yoshida W, Yoshimoto J. Control of exploitation-exploration meta-parameter in reinforcement learning [J]. Neural Networks, 2002, 15(4-6): 665-687.
  • 5Reynolds C W. Flocks, herds, and schools: A distributed behavioral model [J]. Computer Graphics, 1987, 21(4): 25-34.
  • 6Watkins C J C H, Dayan P. Q-learning [J]. Machine Learning, 1992, 8(3-4): 279-292.
  • 7Filar J A, Vrieze K. Competitive Markov Decision Processes [M]. New York, USA: Springer, 1996.
  • 8Shapley L S. Stochastic games [A]. Proceedings of the National Academy of Sciences of the United States of America [C]. Princeton, NJ, USA: Princeton University Press, 1953. 1095-1100.
  • 9Fink A M. Equilibrium in a stochastic n-person game [J]. Journal of Science in Hiroshima University, 1964, A128(1): 89-93.
  • 10Bowling M, Veloso M. Multiagent learning using a variable learning rate [J]. Artificial Intelligence, 2002, 136(2): 215-250.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部