期刊文献+

基于曲波系数局部统计特性的图像去噪算法 被引量:1

Image Denoising Algorithm Based on Local Statistical Property of Curvelet Coefficients
原文传递
导出
摘要 提出一种利用图像在曲波域上局部统计特性的自适应去噪方法。首先在最小线性均方差(LMMSE)准则下,推导出曲波系数在局部区域的恢复公式;为进一步精确估计理想曲波系数的局部方差,提出利用尺度空间和子带内的相关性,即利用粗尺度下小波系数的局部方差预测精细尺度下相应位置的曲波系数为噪声的概率,以及常规估计下的曲波系数的局部方差是否小于门限值判断其是否为噪声;然后以这些局域窗内非噪声成分系数估计理想曲波系数的方差。实验表明,本算法与传统算法相比,图像质量有进一步地改善,尤其是对细节丰富的图像表现更为突出。 An adaptive image denoising method is presented which utilizes the local statistical property of curvelet coefficients. Firstly, under the rule of LMMSE the restoration formula of the curvelet coefficients are deduced, the method exploits the correlation of inter-scale and intra-subband. The local variation of a eurvelet coefficient in the coarse scale is used to predict whether the coefficient in the next fine scale is noise component, which exploits the first correlation. As well, by threshold, the regular estimation of local variance is used to predict whether the coefficient is noise component, which exploits the second correlation. Then ideal local variance of a curvelet is estimated from those coefficients which are not the noise components in the local window. The experiments show that, compared with traditional method, the algorithm makes a great improvement of image quality, especially for the image with much detailed information.
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2009年第3期1-5,共5页 Journal of Wuhan University of Technology
基金 国家自然科学基金(60672137) 教育部高校博士点基金(20060497015)
关键词 CURVELET变换 局部统计 图像去噪 curvelet transform local statistics image denoising
  • 相关文献

参考文献6

  • 1Sendur, Selesnick I W. Bivariate Shrinkage Functions for Wavelet Based Denoising Exploiting Interscale Dependency [ J ]. IEEE Transactions on Signal Processing, 2002,50 ( 11 ) : 2744-2756.
  • 2Chang S G, Yu B, Vetterli M. Adaptive Wavelet Thresholding for Image Denoising and Compression[J]. IEEE Transactions on Image Processing,2000,9(9) : 1532-1546,
  • 3Chen G Y, Bui T D. Multiwavelet Denoising Using Neighboring Coefficients[J]. IEEE Signal Processing Letters, 2003, 10(7) :211-214.
  • 4Candes E J. Harmonic Analysis of Neural Networks[J]. Applied and Computational Harmonic Analysis, 1999, 6(2): 197- 218.
  • 5Donoho D L. Orthonormal Ridgelets and Linear Singularities [J ]. SIAM Journal on Mathematical Analysis, 2000, 31 (5): 1062-1099.
  • 6Strack J L, Candes E I, Donoho D I. The Curvelet Transform for Image Denoising[J]. IEEE Trans on Image Processing, 2002, 11(6): 670-684.

同被引文献13

  • 1王文波,羿旭明,费浦生.基于曲波系数相关性的去噪算法[J].光电子.激光,2006,17(12):1519-1523. 被引量:11
  • 2Andreas K, Mongi A. Digital Color Image Processing [ M ]. Bei-jing: Tsinghua Press,2010 : 112-122.
  • 3Candes E J, Donoho D L Curvelet--A surprisingly effective non- adaptive representation for objects with edges [ C ]//Rabut C, Cohen A, Schumaker L L. Curves and Surfaces. Nashville, USA : Vanderbilt University Press, 1999 : 105-120.
  • 4Candes E J, Donoho D L Recovering edges in ill-posed inverse problems: Optimality of curvelet frames [ J ]. The Annals of Statis- tics, 2002, 30(3): 784-842.
  • 5Candes E J, Demanet L, Donoho D L. Fast discrete eurvelet transforms [ R ] . California: California Institute of Technology, 2005.
  • 6Zhang X C, Zhang C J. Satellite cloud image de-noising and en- hancement by fuzzy wavelet neural network and genetic algorithm in curvelet domain [ J ]. Lecture Notes in Computer Science, 2007,4688 ( 1 ) :389-395.
  • 7李峻,孟正大.基于HS分量联合统计的自适应阈值分割算法[J].东南大学学报:自热科学版,2010,40(增刊1):266-271.
  • 8Astola J, Haavisto P, Neuvo Y. Vector median filters [J]. Pro- ceedings of the IEEE,1990,78 (4) :678-689.
  • 9金良海,姚行中,李德华.彩色图像矢量滤波技术综述[J].中国图象图形学报,2009,14(2):243-254. 被引量:18
  • 10杨居义.基于第二代Bandelet变换的彩色图像去噪算法[J].计算机工程与科学,2010,32(6):65-67. 被引量:1

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部