摘要
A novel post-treatment method, including hard hairbrush and electrical treatment, is performed intentionally to improve the field emission capability and stability of screen-printed carbon nanotubes (CNTs). Compared with untreated films, the field emission properties of the treated ones are greatly enhanced. Scanning electron microscopy (SEM) and Raman spectrum studies reveal that field emission properties are enhanced by two factors. Firstly, the improved field emission properties of CNT films can be attributed to the more active CNT surface by removing the organic material cover on the CNTs. Secondly, the gener- ation of a high density of structural defects and the lower resistance contact to the topside CNT emitters after treatment are all helpful to improving the field emission properties of the treated CNTs.
A novel post-treatment method, including hard hairbrush and electrical treatment, is performed intentionally to improve the field emission capability and stability of screen-printed carbon nanotubes (CNTs). Compared with untreated films, the field emission properties of the treated ones are greatly enhanced. Scanning electron microscopy (SEM) and Raman spectrum studies reveal that field emission properties are enhanced by two factors. Firstly, the improved field emission properties of CNT films can be attributed to the more active CNT surface by removing the organic material cover on the CNTs. Secondly, the gener- ation of a high density of structural defects and the lower resistance contact to the topside CNT emitters after treatment are all helpful to improving the field emission properties of the treated CNTs.