期刊文献+

各向异性外问题的Schwarz交替法及其收敛性和误差估计 被引量:1

A SCHWARZ ALTERNATING METHOD AND ITS CONVERGENCE AND ERROR ESTIMATE FOR ANISOTROPIC ELLIPTIC EXTERIOR PROBLEMS
原文传递
导出
摘要 本文对于无界区域各向异性常系数椭圆型偏微分方程研究了一种基于自然边界归化的Schwarz交替法.利用极值原理证明了在连续情形最大模意义下的几何迭代收敛性,通过选取适当的共焦椭圆边界利用Fourier分析获得了不依赖各向异性程度的最优的迭代收缩因子.还在离散情形最大模意义下证明了几何收敛性,而且进一步得到了误差估计.最后,数值结果证实了迭代收缩因子和误差估计的正确性,表明了该方法在无界区域上求解各向异性椭圆型偏微分方程的优越性. We investigate a Schwarz alternating method based on the natural boundary reduction on the elliptic boundary for the anisotropic elliptic PDEs with constant coefficients in unbounded domains. We prove its geometric iterative convergence with maximum norm in the continuous case by using the maximum principle, and obtain an optimal iteration contract factor, which is independent of the anisotropic degree, by using Fourier analysis with confocal elliptic boundaries. We also prove its geometric convergence in the discrete case with maximum norm and obtain an error estimate of the iterative convergent solution. Finally, our numerical results confirm the correctness of the iterative contract factor and the error estimate, and show the advantage of this method for solving the anisotropic elliptic PDEs in unbounded domains.
出处 《计算数学》 CSCD 北大核心 2009年第1期65-76,共12页 Mathematica Numerica Sinica
基金 北京市自然科学基金(1072009)资助项目.
关键词 SCHWARZ交替法 无界区域 各向异性问题 自然边界归化 误差估计 Schwarz alternating method unbounded domain anisotropic elliptic boundary value problem natural boundary reduction error estimate
  • 相关文献

参考文献19

二级参考文献71

共引文献95

同被引文献21

  • 1余德浩.无界区域上基于自然边界归化的一种区域分解算法[J].计算数学,1994,16(4):448-459. 被引量:49
  • 2戴培良,沈树民.Stokes问题的区域分解法[J].应用数学与计算数学学报,1995,9(1):52-60. 被引量:2
  • 3顾金生,胡显承.解Stokes问题的区域分解算法[J].北京航空航天大学学报,1996,22(2):177-182. 被引量:2
  • 4Temam R. Navier-Stokes Equations: Theory and Numerical Analysis[M]. North-Holland, Ams- terdam, NewYork, 1984.
  • 5Girault V and Raviart P-A. Finite Element Methods for Navier-Stokes Equations[M]. Springer- Verlag, Berlin, 1986.
  • 6Brezzi F and Fortin M. Mixed and Hybrid Finite Element Methods[M]. Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong Barcelona, 1991.
  • 7Enquist B and Majda A. Absorbing boundary conditions for numerical simulation of waves[J]. Math. Comp, 1977, 31: 629-651.
  • 8Givoli D. Numerical Methods for Problems in Infinite Domains[M]. Studies in Applied Mechanics, vol. 33. Elsevier Scientific Publishing Co, Amsterdam, 1992.
  • 9Keller J B and Givoli D. Exact nonreflecting boundary conditions[J]. J. Comput. Phys, 1989, 172-192.
  • 10Feng K. Asymptotic radiation conditions for reduced wave equation[J]. Jcomp. 1984, 2(2): 130- 138.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部