期刊文献+

二型Takagi-Sugeno-Kang模糊模型和不确定高斯混合模型的等价性 被引量:4

Equivalence between type-2 TSK fuzzy model and uncertain Gaussian mixture model
下载PDF
导出
摘要 不确定的高斯混合模型和二型Takagi-Sugeno-Kang(TSK)模糊模型之间的对应关系被建立:任何一个不确定的高斯混合模型都唯一对应着一个二型TSK模糊系统,不确定的高斯混合模型的条件均值和二型TSK模糊系统的输出是等价的.基于此,一种设计二型模糊系统的新方法被提出:通过建立不确定的高斯混合模型确定二型TSK模糊系统,即用概率统计的方法设计二型模糊系统.仿真实验结果表明利用不确定高斯混合模型设计的二型模糊系统比其它模型具有更强的抗噪性和更快的速度. This work explores how the uncertain Gaussian mixture model(UGMM) can be translated to an additive type-2 TSK(Takagi-Sugeno-Kang) fuzzy logic system. The mathematical equivalence between the conditional mean of a UGMM and the defuzzified output of a type-2 TSK fuzzy model(T2-TSK-FM) is proved. The relationship between a UGMM and a T2-TSK-FM, and the conditions for UGMM to T2-TSK- FM translation is made explicit in the form of a theorem. The proposed results provide a new method for constructing a T2-TSK-FM by interpreting a fuzzy system from a probabilistic viewpoint. Instead of estimating the parameters of the fuzzy rules directly, the parameters of a UGMM are estimated using any popular density estimation algorithm, such as expectation maximization. The proposed approach is also applied to Mackey-Glass chaotic time series. After comparing the simulation results with those obtained with other system modeling tools, it can be claimed that successful results are achieved.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第2期186-188,192,共4页 Control Theory & Applications
基金 国家自然科学基金资助项目(60225015) 2004年度国家教育部新世纪优秀人才计划项目(NCET-040496).
关键词 二型TSK模糊模型 高斯混合模型 模糊系统 期望值的最大化算法 type-2 TSK fuzzy model Gaussian mixture model fuzzy system EM(expectation maximization) algorithm
  • 相关文献

参考文献7

  • 1MENDEL J M. Uncertain Rule-based Fuzzy Logic System: Introduction and New Direction[M]. New York: Prentice Hall, 2000.
  • 2MENDEL J M, JOHN R I, LIU F L. Interval type-2 fuzzy logic systems made simple[J]. IEEE Transactions on Fuzzy Systems, 2006, 4(6): 808 - 821.
  • 3LIANG Q L, MENDEL J M. An introduction to type-2 TSK fuzzy logic systems[C]//Proceedings of IEEE International Fuzzy Systems Conference. South Korea, Seoul: IEEE Press, 1999, 3:1534 - 1539.
  • 4LIANG Q L, MENDEL J M. Interval type-2 fuzzy logic systems: theory and design[J]. IEEE Transactions on Fuzzy Systems, 2000, 8(5): 535 - 550.
  • 5EVERITT B S, HAND D J. Finite Mixture Distributions[M]. London, UK: Chapman and Hall, 1981.
  • 6GAN M T. HANMANDLU M, TAN A H. From a Gaussian mixture model to additive fuzzy systems[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(3): 303- 316.
  • 7刘涵,刘丁.基于模糊sigmoid核的支持向量机回归建模[J].控制理论与应用,2006,23(2):204-208. 被引量:17

二级参考文献10

  • 1刘涵,刘丁,李琦.一种遗传—模糊神经网络图像滤波器[J].仪器仪表学报,2004,25(3):310-312. 被引量:3
  • 2VAPNIK V. The Nature of Statistical Learning Theory [ M].New York: Springer-Verlag, 1995.
  • 3VAPNIK V. An overview of statistical learning theory[J]. IEEE Trans on Neural Network, 1999, 10(5) : 988 -999.
  • 4COURANT R, HILBERT D. Methods of Mathematical Physics[M]//Interscience Publications, New York: Wiley, 1953.
  • 5LIN H T, LIN C J. A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods [ EB/OL ].Technical Report, Department of Computer Science and Information Engineering, National TaiWan University, 2004, available at http://www. csie. ntu. edu. tw/ -cjlin/papers/tanh. pdf.
  • 6SCHOLKOPF B, BURGE C, SMOLA A. Advances in Kernel Methods: Support Vector Machines [ M]. Cambridge, MA: MIT Press, 1998.
  • 7SOIRA E, MARTIN J, CAMPS G, et al, A low complexity fuzzy activation function for artificial neural network [J]. IEEE Trans on Neural Networks, 2003, 14(6) : 1576 - 1579.
  • 8PEREZ-CRUZ F , ARTES-RODRIGUEZ A. A new optimizing procedure for v-support vector regressor [ C] //Proc of Int Conf on Acoustics, Speech and Signal Processing, ICASSP O1. Salt Lake City, UT: IEEE Press, 2001, 2:1265 - 1268.
  • 9王定成,方廷健.一种基于支持向量机的内模控制方法[J].控制理论与应用,2004,21(1):85-88. 被引量:12
  • 10刘涵,刘丁,郑岗,梁炎明,宋念龙.基于最小二乘支持向量机的天然气负荷预测[J].化工学报,2004,55(5):828-832. 被引量:48

共引文献16

同被引文献105

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部