期刊文献+

AR与Prony法的时变系统模态参数识别 被引量:4

Modal Parameter Identification of a Time-Varying System by Autoregressive Modelling and Prony Analysis
下载PDF
导出
摘要 研究AR和Prony法的线性时变振动系统的模态参数识别。提出可以处理非平稳信号的时变Prony法。采用递推最小二乘算法估计模型参数,并讨论基函数的选择,其中以时间多项式基、离散长球面基以及离散余弦基下所识别的效果较好。为验证方法的有效性,进行了数字仿真和附加质量随时间连续变化的悬臂梁的模态分析试验,试验结果和理论结果比较,表明了提出的线性时变系统的模态参数识别方法有效、可行。 In this paper, modal parameter identification of a time-variant linear vibration system is studied using autoregressive modeling and Prony analysis. Based on the classical Prony analysis, an improved method to process non-stationary signals is presented. The recursive least squares method is adopted to estimate model parameters. Choice of the base functions is discussed. It shows that as the base functions, time polynomial functions, discrete long spherical functions and discrete cosine functions are more suitable than the others for modal parameter identification. To validate the proposed method, numerical simulation and a vibration mode test of a cantilever beam are completed, where the mass varies continuously with time. Comparison between identification results and theoretical results indicates that the proposed method is effective and feasible to identify modal parameters of time-variant linear system.
出处 《噪声与振动控制》 CSCD 北大核心 2009年第1期5-8,20,共5页 Noise and Vibration Control
基金 国家自然科学基金项目(50678173) 上海铁路局资助项目(2006076)
关键词 振动与波 模态参数识别 时变Prony法 基函数 线性时变系统 vibration and wave modal parameter identification, time varying Prony method, base function, time-variant linear system
  • 相关文献

参考文献10

  • 1刘丽兰,刘宏昭,吴子英,原大宁.基于时变多变量Prony法的时变振动系统模态参数辨识[J].机械工程学报,2006,42(1):134-138. 被引量:13
  • 2Grenier Y. Time-dependent ARMA Modeling of Nonstationary Signal [ J]. IEEE Transaction, ASSP, 1983,31 : 899 -911.
  • 3Chukiet S. Time-varying Autoregressive Modeling fro Nonstationary Acoustic Signal and its Frequency Analy- sis. Pennsylvania [ D ]. The Pennsylvania State University, 2003.
  • 4Petsounis K A, Fassois S D. Non-Stationary Functional Series TARMA Vibration Modeling and Analysis in a Planar Manipulator [ J ]. Journal of Sound and Vibration,2000,231 : 1355 - 1367.
  • 5Trudnowskid H,Johnson J M, Hauer J F. Making Prony Analysis More Accurate Using Multiple Signals [ J ]. IEEE Transaction on Power System, 1999, 14:226 -231.
  • 6杨叔子,吴雅.间序列分析的工程应用[M].武汉:华中理工大学出版社,1989:48-86.
  • 7He X, Roeck G D. System Identification of Mechanical Structure by a High-Order Multivariate Autoregressive Model. Computers & Structure, 1997,64:341 - 351.
  • 8Huang C S. Structure Identification from Ambient Vibration Measurement Using the Multivariate AR Model [ J ]. Journal of Sound and Vibration,2001,241:337 - 359.
  • 9王文华,王宏禹.一种非平稳随机信号模型的时变参数估计算法性能研究[J].大连理工大学学报,1997,37(1):97-102. 被引量:19
  • 10Charbonnier R , Barlaud M. Resuhs on AR-Modeling of Nonstationary Signals [ J ]. Signal Processing, 1987 , 12 (2) : 143 - 151.

二级参考文献13

  • 1王文华,王宏禹.一种非平稳随机信号模型的时变参数估计算法性能研究[J].大连理工大学学报,1997,37(1):97-102. 被引量:19
  • 2杨叔子 吴雅.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1989..
  • 3黄建国,现代谱估计.原理与应用(译),1994年
  • 4王宏禹,现代谱估计,1990年
  • 5吴今培,实用时序分析,1989年
  • 6王宏禹,随机数字信号处理,1988年
  • 7HUANG C S.Structural identification from ambient vibration measurement using the multivariate AR model[J].Journal of Sound and Vibration,2001,241:337-359.
  • 8CHARBONNIER R,BARLAUD M.Results on AR modeling of non-stationary signals[J].Signal Processing,1987,12:143-151.
  • 9GRENIER Y.Time-dependent ARMA modeling of nonstationary signals[J].IEEE Transactions,ASSP,1983,31:899-911.
  • 10CHUKIET S.Time-varying autoregressive modeling for nonstationary acoustic signal and its frequency analysis[D].Pennsylvania:The Pennsylvania State University,2003.

共引文献28

同被引文献37

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部