期刊文献+

二进制的交叉挖掘关联规则研究 被引量:3

Algorithm of intercrossing mining association rules based on binary
下载PDF
导出
摘要 为了易于产生候选频繁项目集和计算项目集的支持数,提出了基于二进制的关联规则挖掘算法,但在搜索候选频繁项目集时仍从集合论出发,沿用传统搜索超集或子集的方法,在一定程度上效率受到了限制;为此提出了一种基于二进制的交叉挖掘关联规则算法,通过数值的递增和递减交叉方式自动产生候选频繁项集,缩短了候选频繁项的搜索空间,并在计算支持数时通过数字特征减少了扫描事务的个数,算法的效率得到了明显提高;该实验结果表明:与现有的二进制关联规则挖掘算法相比,算法是快速而有效的。 In order to easily generate candidate frequent itemsets and calculate support of itemsets,an algorithm of association rules mining based on binary is presented.However,at the time of searching candidate frequent itemsets,according to set theory this algorithm still uses traditional methods of searching superset or subset to generate candidate frequent itemsets,to a certain extent the efficiency of the algorithm has been influenced.Hence,this paper proposes an algorithm of intercrossing mining association rules based on binary,which automatically crossways generates candidate frequent itemsets through ascending and descending value to shorten searching space of candidate frequent itemsets,and then applies digital character to reduce the number of scanned transactions to be calculated support.And so the efficiency of the algorithm is obviously improved,and the experiment indicates that the algorithm is fast and efficient by comparing with existing algorithms of association rules mining based on binary.
作者 方刚 熊江
出处 《计算机工程与应用》 CSCD 北大核心 2009年第7期141-145,共5页 Computer Engineering and Applications
关键词 关联规则 交叉挖掘 数值递减 数值递增 数字特征 二进制 association rules intercrossing mining value descending value ascending digital character binary
  • 相关文献

参考文献10

二级参考文献36

  • 1李天志,梁家荣,范平.基于二进制的集合运算研究[J].计算机工程与应用,2005,41(33):100-102. 被引量:2
  • 2李天志,梁家荣,范平,徐凤生.基于二进制的粗糙集基本运算研究[J].广西科学,2006,13(2):109-112. 被引量:1
  • 3Han J.W.,Kamber M..Data Mining:Concepts and Techniques.Beijing:Higher Education Press,2001.
  • 4Agrawal R.,ImielinSki T.,Swami A..Mining association rules between sets of items in large database.In:Proceedings of the ACM SIGMOD International Conference on Managementof Data,Washington,DC,1993,2:207-216.
  • 5Srikant A.R..Fast algorithms for mining association rules.In:Proceedings of the 20th International Conference Very Large Data Bases(VLDB’94).Santiago,Chile,1994,487-499.
  • 6Han J.W.,Pei J.,Yin Y..Mining partial periodicity using frequent pattern tree.Simon Fraser University:Technical Report TR-99-10,1999.
  • 7Cheung D.,Han J.W.,Ng V.,Wong V..Maintenance of discovered association rules in large databases:An incremental updating technique.In:Proceedings of the 12th International Conference on Data Engineering(ICDE),New Orleans,Louisiana.1996.106-114.
  • 8Cheung D.LEE S.Kao B.A general incremental technique for maintaining discovered association rules.In:Proceedings of the 5th International Conference on Database Systems for Advanced Applications(DASFAA),Melbourne,Australia,World Scientific,1997,185-194.
  • 9Han J.W.,Pei J.,Yin Y..Mining frequent patterns without candidate generation.In:Proceedings of the 2000 ACM-SIG-MOD International Conference on Management of Data,Dal1as,2000,1-12.
  • 10Bayardo R.J..Efficiently mining long patterns from databases.In:Haas L.M.,Tiwary A.eds..Proceedings of the ACMSIGMOD International Conference on Management of Data.New York:ACM Press,1998,85-93.

共引文献499

同被引文献14

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部