期刊文献+

结合核密度估计和边缘信息的运动对象分割算法 被引量:3

A Novel Moving Object Segmentation Algorithm Using Kernel Density Estimation and Edge Information
下载PDF
导出
摘要 针对前景与背景具有相似颜色时的运动对象分割问题,提出一种结合核密度估计和边缘信息的分割算法.在前景和背景建模阶段使用颜色信息的基础上,引入边缘信息来构造前景和背景的概率模型;然后在马尔可夫随机场框架下引入与概率模型有关的似然能量项,以及反映空域连续性和时域一致性的能量项,并利用图切割方法来获得可靠的运动对象分割结果.实验结果证明,对于前景与背景具有相似颜色的视频序列,该算法降低了对象分割误差,显著地提高了整个序列中对象分割的鲁棒性. This paper proposes a novel moving object segmentation algorithm based on kernel density estimation and edge information to solve the color similarity problem between foreground and background. During the stage of foreground/background modeling, both color feature and edge feature are used to build two probability models. Under the framework of Markov random field (MRF), three energy terms associated with the likelihood of foreground/background, spatial continuity and temporal consistency are introduced to construct a graph, and the graph cut method is exploited to reliably segment moving objects. Experimental results demonstrate that the proposed algorithm reduces the segmentation error when foreground and background show similar colors, and greatly enhances the segmentation robustness during the whole video sequence.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第2期223-228,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60602012) 上海市教育发展基金会晨光计划项目(2007CG53) 上海市教育委员会科研创新项目(09YZ02) 上海大学优秀青年教师基金
关键词 运动对象分割 核密度估计 马尔可夫随机场 moving object segmentation kernel density estimation Markov random field (MRF)
  • 相关文献

参考文献13

  • 1Pers J, Kovacic S. Computer vision system for tracking players in sports games [C] //Proceedings of the 1st International Workshop on Image and Signal Processing and Analysis, Pula, 2000:177-182.
  • 2Han M, Sethi A, Hua W, et al. A detection-based multiple object tracking method [C] //Proceedings of International Conference on Image Processing, Singapore, 2004, 5: 3065- 3068.
  • 3Broggi A, Bertozzi M, Fascioli A, et al. Shape based pedestrian detection [C]// Proceedings of the IEEE Intelligent Vehicles Symposium, Dearborn, 2000:215-220.
  • 4Kim J B, Kim H J. Efficient region based motion segmentation for a video monitoring system [J]. Pattern Recognition Letters, 2003, 24(1/3) : 113-128.
  • 5Elgammal A, Duraiswami R, Harwood D, et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [J]. Proceedings of the IEEE, 2002, 90(7): 1151-1163.
  • 6Huang S S, Fu I. C, Hsiao P Y. Region-level motion-based background modeling and subtraction using MRFs [J]. IEEE Transactions on Image Processing, 2007, 16(5): 1446-1456.
  • 7Stauffer C, Grimson W E I.. Learning patterns of activity using real-time tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8) : 747-757.
  • 8KaewTraKulPong P, Bowden R. An improved adaptive background mixture model for real time tracking with shadow detection [C]// Proceedings of the 2nd European Workshop on Advanced Video Based Surveillance Systems, Kingston, 2001:149-158.
  • 9Sheikh Y, Shah M. Bayesian modeling of dynamic scenes for object detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(11): 1778-1792.
  • 10Canny J. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.

二级参考文献12

  • 1陈睿,邓宇,向世明,李华.结合强度和边界信息的非参数前景/背景分割方法[J].计算机辅助设计与图形学学报,2005,17(6):1278-1284. 被引量:13
  • 2向世明,陈睿,邓宇,李华.在线高斯混合模型和纹理支持的运动分割[J].计算机辅助设计与图形学学报,2005,17(7):1504-1509. 被引量:11
  • 3Haritaoglu I,Harwood D,Davis L S.W4:Real-time surveillance of people and their activities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):809-830
  • 4Wren C,Azarbayejani A,Darrell T,et al.Pfinder:real-time tracking of the human body[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):780-785
  • 5Stauffer C,Grimson W E L.Adaptive background mixture models for real-time tracking[C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,Fort Collins,1999:246-252
  • 6Elgammal A,Harwood D,Davis L S.Non-parametric model for background subtraction[C] //Proceedings of 6th European Conference on Computer Vision,Dublin,2000:751-767
  • 7Thongkamwitoon T,Aramvith S,Chalidabhongse T H.An adaptive real-time background subtraction and moving shadows detection[C] //Proceedings of IEEE International Conference on Multimedia and Expo,Singapore,2004:63-66
  • 8Kato J,Watanabe T,Joga S,et al.An HMM-based segmentation method for traffic monitoring movies[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(9):1291-1296
  • 9Boykov Y,Kolmogorov V.An experimental comparison of min-cut/max-flow algorithm for energy minimization in vision[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(9):1124-1137
  • 10Freedman D,Zhang T.Interactive graph cut based segmentation with shape priors[C] //Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition,San Diego,2005,1:755-762

共引文献3

同被引文献26

  • 1Cucchiara R, Granan C, Piecardi M, et al. Detecting moving objects, ghosts, and shadows in video streams [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (10): 1337-1342.
  • 2Chien Shao-yi, Ma Shyh-yih, Chen Liang-gee. Efficient moving object segmentation algorithm using background registration technique [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2002,12(7) : 577-586.
  • 3Hsieh Jun-wei, Hu Wen-fong, Chang Chia-jung, et al. Shadow elimination for effective moving object detection by Gaussian shadow modeling [ J ] . Image and Vision Computing, 2003, 21 ( 6 ) : 505-516.
  • 4Rosin P, Ellis T. Image difference threshold strategies and shadow detection[ A]. In: Proceedings of the 1995 British Conference on Machine Vision [ C ], Birmingham, United Kingdom, 1995: 347-356.
  • 5Salvador E, Cavallaro A, Ebrahimi T. Cast shadow segmentation using invarlant color features [ J ]. Computer Vision and Image Understanding, 2004, 95 (2) :238-259.
  • 6Xu Dong, Liu Jian-zhuang, Li Xue-long, et al. Insignificant shadow detection for video segmentation [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2005, 15 (8) : 1058-1064.
  • 7John Canny. A computational approach to edge detection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6) :679-698.
  • 8Adams R, Bischof L. Seeded region growing[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16 (6): 641-647.
  • 9Vass J, Palaniappan K, Zhuang Xin-hua. Automatic Spatio-tem- poral video sequence segmentation [C] //Proceedings of IEEE International Conference on Image Processing. Chicago, USA,1 998:958-962.
  • 10Badenas J,Bober M, Pla F. Segmenting traffic scenes from grey level and motion information [J]. Pattern Analysis and Applica- tions, 2001,4 ( 1 ) : 28-38.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部