摘要
在L-拓扑空间中引入SR-F可数紧性,给出其α-有限交式、覆盖式等刻画.并证明了SR-F可数紧性具有有限可和、可乘、对半正则闭子集遗传、L-good extension等许多性质.
SR-F countable compactness is introduced in L-topological, and its characterizations with a-finite intersection and cover are given. It is shown that SR-F countable compactness has many properties. The sum of finite SR-F countable compact sets is a SR-F countable compact set, and it is muhiplicative, hereditary with respect to semi-regular close subset, L-good extension.
出处
《汕头大学学报(自然科学版)》
2009年第1期8-12,共5页
Journal of Shantou University:Natural Science Edition
基金
教育部科学技术研究重点项目(206089)
山东省软科学项目(B2005049)