期刊文献+

高斯热源模型中单元尺寸与精度关系 被引量:6

Relationship of Element Size and Precision With Gauss Heat Source
下载PDF
导出
摘要 讨论了当焊接热源为高斯热源时,采用不同大小的积分区域和网格单元尺寸,由高斯数值积分得到的热输入与理论热输入之间的差异。认为当积分矩形区域的边长为3R(R为热源有效半径)时,数值积分得到的热输入量就非常接近理论热数量,增大积分区域尺寸对结果精度的影响有限。高斯点函数值采用形函数给出时,积分结果偏小,而直接用已知函数给出时,积分结果偏大。等分数为3,即网格单元尺寸为积分区域尺寸的1/6或有效热源半径的1/2时,数值积分的精度已非常高,网格单元尺寸更进一步减小时对精度提高的作用有限。 The difference between the theory heat input and the heat input calculated by Gauss numerical integral method, which was input by Gauss heat source was discussed, when the different integral zone and mesh element size were taken into account. The numerical result is close to theory value when length side of integral zone is equal to 3 times the effective radius of heat source. The lager zone couldn't improve numerical integral precision. The numerical integral result is lower than theory value when the value of Gauss Point is gained by shape function but higher when it was gained by Gauss distribution function. The numerical precision is very high when the mesh element size is 1/6 times the size of integral zone or 1/2 times the effective radius of heat source. The smaller element size couldn't improve numerical precision.
作者 管建军
出处 《辽宁石油化工大学学报》 CAS 2009年第1期50-53,共4页 Journal of Liaoning Petrochemical University
关键词 高斯热源模型 高斯积分 焊接温度场 Gauss heat source model Gauss integration Welding temperature field
  • 相关文献

参考文献6

二级参考文献25

  • 1汪建华,戚新海,钟小敏,上田幸雄,村川英一.焊接结构三维热变形的有限元模拟[J].上海交通大学学报,1994,28(6):59-65. 被引量:46
  • 2汪建华,钟小敏,戚新海.管板接头三维焊接变形的数值模拟[J].焊接学报,1995,16(3):140-145. 被引量:23
  • 3Carmignani C, Mares R, Toselli G. Transient finite element analysis of deep penetration laser welding process in a singlepass butt-welded thick steel plate. Computer Methods in Applied Mechanics and Engineering, 1999, 179(3): 197-214.
  • 4Hill M R, Nelson D V. Determining residual stress through the thickness of a welded plate. American Society of Mechanical Engineers, Pressure Vessels and Piping Division(Publication) PVP, 1996, 327:29-36.
  • 5John G. A new finite model for welding heat source. Metallurgual Transactions, 1984, 15B(2):299-305.
  • 6Janez D S. Mathematical modeling of melting rate in twin wire welding. Journal of Materials Processing technology,2000, 100:250-256.
  • 7Cant R R..The Making of a Permanent Hot Tap Connection[J]. Pipeline and Gas Journal, 2000, 227(8): 16, 20, 22, 24.
  • 8Goodfellow R, Belanger R.. Hot Tap Installed on Operating Sour-gas Line[J]. Oil and Gas Journal, 2001, 99(12): 50-55.
  • 9Hutt G, West A, Starsmore R.. Hot Tapping on a Subsea Pipeline[J]. Welding and Metal Fabrication, 1995, 63(4): 136-139.
  • 10Nemoto M, Susa M.. Hot Tap Method Developed for Heating,Cooling Pipe[J]. Pipe Line Industry, 1992, 75(1): 64-65.

共引文献86

同被引文献29

  • 1Frewin M R, Scott D A. Finite element model of pulsed laser welding[J]. Welding Research Supplement, 1999,78(1): 15-22.
  • 2Carmingnani C, Mares R, Toselli G. Transient finite element analysis of deep penetration laser welding process in a ingle pass buttwelded thick steel plate[J]. Computer Methods in Applied Mechanics and Engineering, 1999,179(3):197-214.
  • 3Kumar Subodh, Bhaduri S C. Three-Dimensional finite element modeling of gas metal-arc eldmg[J]. Metallurgical and materials transactions, 1994, 25B:435-441.
  • 4胡恩球,张新访,向文,周济.有限元网格生成方法发展综述[J].计算机辅助设计与图形学学报,1997,9(4):378-383. 被引量:98
  • 5路登平.正态分布焊接热源集中系数的确定和研究[J].焊接学报,1986,7(1):47-54.
  • 6EN 13458-2:2002 Cryogenic vessels-Static vacuum-insulated vessels-Part 2 [S].
  • 7ISO 21009-1:2008 Cryogenic Vessels-static Vacuum-insulated Vessels-Part 1 : Design, Fabrication, Inspection and Tests[S].
  • 8ASME Code 2596 Coldstretching of Austenitic Stainless Steel Pressure Vessels[S].
  • 9NB/T47016承压设备产品焊接试件的力学性能检验[S].
  • 10Dean Deng, Hidekazu Murakawa. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements [J]. Computational Materials Science, 2006,37(3): 269-277.

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部