期刊文献+

顾及距离与形状相似性的面状地理实体聚类 被引量:13

Clustering Analysis of Geographical Area Entities Considering Distance and Shape Similarity
原文传递
导出
摘要 与点状地理实体不同,面状地理实体不仅具有位置特征,还具有形状特征。对于面状地理实体而言,仅考虑距离因素设计聚类准则是不全面的。综合考虑距离和几何形状相似性来设计聚类准则,实现了相应的聚类算法。实验证明,该算法适合面状地理实体的聚类分析。 Geographical area entities are different from geographical point entities, because they have both position feature and shape feature. It is not enough for geographical area entities to be clustered if the clustering criterion just considers distance factor. The clustering criterion designed by us includes distance factor and geometry shape similarity factor. On the basis of this, the corresponding clustering algorithm was implemented. The experimental results show that the algorithm fits to clustering analysis of geographical area entities.
机构地区 西安测绘研究所
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2009年第3期335-338,共4页 Geomatics and Information Science of Wuhan University
基金 国家863计划资助项目(2001AA135080)
关键词 空间聚类 面状地理实体 相似性准则 spatial clustering geographical area entities similarity criterion
  • 相关文献

参考文献6

  • 1Gao X B, Xie W X. Research Progress of Fuzzy Clustering Theory and Application[J]. Chinese Science Bulletin,1999,21(44) :2 241-2 251
  • 2Hall L O, Ozyurt B, Bezdek J C. Clustering with a Genetically Optimized Approach[J]. IEEE Transactions on Evolutionary Computation, 1999,3(2) : 103- 112
  • 3Kaufman L, Rousseeuw P J. Finding Groups in Data: An Introduction to Cluster Analysis[M]. New York: Wiley & Sons, 1990
  • 4Ng R T, Han J. Efficient and Effective Clustering Methods for Spatial Data Mining[C]. Int Conf Very Large Data Bases (VLDB'94), The University of British Columbia, Vancouver B C, Canada, 1994
  • 5杨春成,张清浦,田向春,何列松,苏永宪.基于遗传算法的面状地理实体聚类[J].地理与地理信息科学,2004,20(3):12-16. 被引量:7
  • 6杨春成,张清浦,田向春,何列松.应用于面状地理实体聚类分析的线段链形状相似性准则[J].武汉大学学报(信息科学版),2005,30(1):61-64. 被引量:3

二级参考文献17

  • 1Gao X B, Xie W X. The Research Progress of Fuzzy Clustering Theory and Application.Chinese Science Bulletin,1999,21(44).
  • 2Hall L O, Ozyurt B, Bezdek J C. Clustering with a Genetically Optimized Approach. IEEE Trans. on Evolutionary Computation,1999,3(2):103~112.
  • 3Knorr E M, Ng R T, Shilvock D L.Finding Boundary Shape Matching Relationships in Spatial Data. 5th International Symposium(SSD'97), Berlin,1997.
  • 4Remco C V. Shape Matching: Similarity Measures and Algorithms.http://citeseer.nj.nec.com/veltkamp01shape.html, 2004.
  • 5JAIN A K,MURTY M N,FLYNN P J. Data clustering:a review[J].AGM Computing Surveys, 1999,31(3):264-323.
  • 6CHIOUYC, LANLW.Theory and methodology genetic clustering algorithms[J]. European Joumal of Operational Research,2001, 135(2):413-427.
  • 7RADCLIFFZE N J. Genetic set recombination[A]. WHITELEY L D. Foundations of Genetic Algorithms 2[C]. San Mateo: Morgan Kaufmann Publishers, 1993.
  • 8ESTERM,KRIEGELHP,SANDERJ,etal. A density- based algorithm for discovering clusters in large spatial databases[A].Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining (KDD'96)[C]. Menlo Park:AAAI Press, 1996. 226-331.
  • 9NG RT,HAN J .Efficient and effective clustering methods for sparial data mining [A]. Proc. 1994 Int. Conf. Very Large Data Bases (VLDB'94) [C]. San Francisoo: Morgan Kaufmann Publishers,1994.144-155.
  • 10ESTIVILL-CASTRO V, MURRY A T. Spatial clustering for data mining with genetic algorithms [A]. Proceedings of the International ICSC Symposium on Engineering of Intelligent Systems (ELS- 98) [C]. Canada: ICSC Academic Press, 1998.

共引文献8

同被引文献157

引证文献13

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部