摘要
基于工程热力学和空气动力学理论分别建立了带附加气室空气弹簧系统各元部件的状态方程和动力学方程,为了简化复杂的非线性模型,根据泰勒级数理论,利用小偏差线性化的方法在小振幅的条件下对各方程进行了线性化处理,并推导出了带附加气室空气弹簧动刚度的线性化模型。为了验证线性化模型的精度和分析各参变量对弹簧动刚度的影响关系,以美国Firestone公司生产的1T15M-2型膜式空气弹簧作为计算对象,分别利用空气弹簧动刚度的非线性和线性化模型计算了弹簧动刚度与各因素之间的动态变化关系,计算结果表明空气弹簧内压、节流孔有效面积、弹簧振动频率以及附加气室容积等因素均会影响弹簧动刚度;动刚度的线性化与非线性模型在各因素影响下的变化曲线基本吻合。
Based on the theory of thermomechanics and fluid dynamics,the state equations and dynamic equations of the system of air spring,auxiliary chamber and orifice were established.In order to simplify the complex nonlinear model,under the assumption of small vibration amplitude,the dynamic equations were processed with the linearizing method of small deviation based on Taylor series,and then the linearized model for dynamic stiffness of air spring was deduced.In order to verify the precision of linearized model and analyze the effects of various factors on dynamic stiffness of air spring,taking the Firestone 1T15M-2 air spring as example,the dynamic stiffness of air spring with varying parameters was calculated with the nonlinear and the linearized model respectively.The results show that air spring pressure,area of orifice,frequency of vibration,and volume of auxiliary chamber all affect dynamic stiffness of air spring.Under the affection of influential factors,the change curves of performance parameters of the linearized model are fundamentally close to those of the original nonlinear model.
出处
《振动与冲击》
EI
CSCD
北大核心
2009年第2期72-76,共5页
Journal of Vibration and Shock
基金
教育部优秀青年教师计划项目(20011829)
关键词
空气弹簧
附加气室
动刚度
线性化模型
air spring
auxiliary chamber
dynamic stiffness
linearied model