期刊文献+

基于核主成分分析和子空间分类的边缘检测方法 被引量:1

Edge Detection Method Based on Kernel Principal Component Analysis and Subspace Classification
下载PDF
导出
摘要 针对传统边缘检测方法对噪声敏感的问题,提出了一种基于核主成分分析和子空间分类的边缘检测方法,建立了统一的图像特征表达模型.首先结合其它边缘检测方法进行采样并将采样结果投影到特征空间,然后将核主成分分析得到的特征向量组成特征空间的一个子空间,最后将子空间分类法推广到特征空间来对数据进行分类.实验结果表明,该方法增强了对噪声的鲁棒性,能适应小样本训练,其边缘检测效果明显优于经典算子、主成分分析和非线性主成分分析方法. In order to enhance the robustness of the traditional edge detection methods to noises, an edge detection method based on the kernel principal component analysis (KPCA) and the subspace classification is proposed, and a unified model to represent image features is established. First, the proposed method combined with other edge detection methods selects samples which map in the feature space, and then builds a subspace in the feature space with the eigenvetors obtained via KPCA..Afterwards, it expands the subspace classification into the feature space for data classification. Experimental results indicate that the proposed method is robust to noises and is suitable for small-sample training, and that the detection accuracy of the method is higher than that of the classical operators, the principal component analysis (PCA) and the nonlinear PCA.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第1期59-63,共5页 Journal of South China University of Technology(Natural Science Edition)
关键词 边缘检测 核主成分分析 子空间分类 特征空间 样本选择 edge detection kernel principal component analysis subspace classification feature space sample selection
  • 相关文献

参考文献17

  • 1Haralic R M, Sternberg S R, and Zhuang Xin-Hua, Image analysis using mathematical morphology [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987,9(4) :532-550.
  • 2袁华,吴效明,岑人经,袁支润.MRI中的肿瘤边缘的自动检测[J].华南理工大学学报(自然科学版),2001,29(4):6-8. 被引量:3
  • 3Mallat Stephane, Hwang Wen-Liang. Singularity detection and processing with wavelets [ J ]. IEEE Transactions on Information Theory,1992,38i2) :617-643.
  • 4Saleem Muhammad,Touqir Imran,Siddiqui Adil Masood. Novel edge detection [C]// Proceeding of the Fourth International Conference on Information Technology. Las Vegas : IEEE ,2007 : 175-180.
  • 5吴上生,方飞村,段富海,苟国华.B样条二进小波在齿轮轮廓图像处理中的应用[J].华南理工大学学报(自然科学版),2007,35(8):55-58. 被引量:6
  • 6Moquez David A, Paredes Jose L, Garcla-Gabin Winston. Nonlinear filters based on support vector machines [C] // Proc of IEEE International Conference on Acoustics, Speech and Signal Processing. Honolulu: IEEE, 2007: 581-584.
  • 7Kass Michael, Witkin Andrew, Terzopoulos Demetri. Snakes : active contour models [ J ]. International Journal of Computer Vision,1998,1 (4) :321-331.
  • 8Xu Chenyang, Prince Jerry L. Snakes, shapes, and gradient vector flow [J]. IEEE Transactions on Image Processing, 1998,7 ( 3 ) :359-369.
  • 9马苗,樊养余,谢松云,郝重阳,黎新伍.基于灰色系统理论的图象边缘检测新算法[J].中国图象图形学报(A辑),2003,8(10):1136-1139. 被引量:64
  • 10Zeng Xiang-Yan, Chen Yen-Wei, Nakao Zensho. Image feature representation by the subspace of nonlinear PCA [ C ] //Proceeding of the 16th International Conference on Pattern Recognition. Quebec City : IEEE, 200i : 228- 231.

二级参考文献15

  • 1陈武凡.彩色图像边缘检测的新算法[J].中国科学:A辑,1995,25(2):219-224.
  • 2邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1996.1-100.
  • 3梅仁杰.计算机图象处理[M].杭州:浙江大学出版社,1990..
  • 4Zhu Yan,IEEE Trans Medical Image,1997年,16卷,1期,55页
  • 5陈武凡,中国科学.A,1995年,15卷,2期,219页
  • 6容观澳.计算机图象处理[M].北京:清华大学出版社,2002..
  • 7崔锦泰,程正兴.多元样条理论及应用[M].陕西:西安交通大学出版社,1991.
  • 8Mallat S,Stephane,杨力华.信号处理的小波导引[M].机械工业出版社,2002.
  • 9崔锦泰,Chui Charles K,程正兴.小波分析导论[M].西安交通大学出版社,1995.
  • 10Canny J.A Computational approach to edge detection[J].IEEE T rans PAM I,1986,8(6):679-698.

共引文献69

同被引文献12

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部